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Abstract 

 Background: Iron-deficiency anemia (IDA) remains the leading pediatric hematologic 

disorder worldwide, compounded by infection-driven inflammation that confounds traditional iron 

biomarkers. Translational diagnostics increasingly seek multiplexed yet field-deployable molecular 

assays capable of retaining analytical rigor outside reference laboratories. 

 Methods: A cross-sectional study (n = 100; age 6 months–12 years) evaluated a four-gene 

immune-transcript panel (CD3E, CD4, CD8A, IL10) quantified by MIQE-compliant RT-qPCR from 

paired EDTA blood and dried blood spots (DBS). Validation parameters included primer efficiency 

(90–110 %), melt-curve specificity, reference-gene stability (geNorm V₂/₃ ≤ 0.15; NormFinder ≤ 0.30), 

and replicate precision (CV ≤ 5 %). Diagnostic analyses compared mild (Hb ≥ 10 g/dL) vs 

moderate/severe (Hb < 10 g/dL) IDA and explored associations with BRINDA-adjusted ferritin, Ret-

He, and hepcidin. 

 Results: Mean RNA yield was higher from EDTA (4.2 µg) than DBS (3.1 µg; p = 0.002), 

while purity and Ct precision were equivalent. All primers achieved 95–103 % efficiency with single 

melt peaks. Reference genes GAPDH and HPRT1 were stable (M = 0.56). CD3E expression declined 

with anemia severity (p = 0.04) and correlated with ferritin (r = 0.29, p = 0.004); IL10 rose as Hb 

decreased (r = –0.22, p = 0.03). The Combined Immune Score (CIS = mean z-CD3E – z-IL10) yielded 

AUC 0.79 (95 % CI 0.70–0.88) with 10-fold cross-validated AUC 0.78 (SD 0.05). Expression ratios 

were matrix-invariant. 

 Conclusions: A disciplined RT-qPCR workflow applied to DBS quantifies biologically 

meaningful immune axes in pediatric IDA. CD3E and IL10 serve as reproducible reporters of T-cell 

tone and counter-regulation. The CIS adds orthogonal diagnostic context to ferritin, Ret-He, and 

hepcidin and is operationally compatible with humanitarian field pipelines. 
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1. INTRODUCTION 

 

Iron-deficiency anemia (IDA) remains the most prevalent nutritional disorder of 

childhood, affecting nearly one in three children worldwide (1, 2). In malaria- and 

infection-endemic settings, inflammation alters canonical iron markers, complicating 

interpretation and leading to both under- and over-treatment. WHO’s 2024 guideline on 

hemoglobin thresholds emphasizes context-specific biomarker interpretation and 

reinforces the need for affordable yet reliable diagnostic strategies (1). Ferritin, the 

standard indicator of iron stores, is an acute-phase reactant that rises in infection. 

BRINDA algorithms correct ferritin for inflammation using regression adjustment 

against CRP and AGP (3-5), yet even adjusted ferritin reflects storage rather than 

functional iron supply. Reticulocyte hemoglobin equivalent (Ret-He) and hepcidin add 

functional and regulatory insight (6-10), but neither captures the immune-metabolic 

processes that modulate erythropoiesis during chronic inflammation. Immune–

hematopoietic crosstalk tightly links iron metabolism and cellular immunity. Iron 

scarcity impairs T-cell proliferation, while cytokines such as IL-6 and IL-10 induce 

hepcidin and suppress erythropoietin signaling (15-17). CD3E, encoding the CD3ε chain 

of the T-cell receptor complex, reflects overall T-cell activity and metabolic tone, 

whereas IL10 marks counter-regulation and iron-restrictive anti-inflammatory 

pathways. Measuring these transcripts could reveal immune signatures that explain 

variance in IDA severity not captured by biochemical markers. DBS sampling offers 

minimally invasive collection, room-temperature stability, and transport simplicity (18, 

19). Yet RNA degradation and amplification variability must be controlled. By adhering 

to MIQE standards (11, 12) efficiency testing, melt-curve verification, reference-gene 

validation field-collected DBS can produce quantitatively credible qPCR data. Therefor 

this study was conducted to validate a four-gene immune-transcript assay (CD3E, CD4, 

CD8A, IL10) for quantitative accuracy, reference-gene stability, and diagnostic utility 

in DBS samples, and to evaluate its integration with BRINDA-adjusted ferritin, Ret-

He, and hepcidin for pediatric IDA classification. 

 

2. METHODS 

 

Cross-sectional diagnostic-validation study conducted between March 2024 and 

February 2025 among 100 children (6 months–12 years) attending outpatient clinics in 

[Institution]. Participants were stratified as mild (Hb ≥ 10 g/dL) or moderate/severe (Hb 

< 10 g/dL) IDA. Exclusion criteria included acute infection, hemoglobinopathies, chronic 

inflammatory disease, or recent iron therapy. Paired EDTA (0.5–1 mL) and DBS (50–

100 µL on Whatman 903) samples were collected. DBS were air-dried 3–4 h, sealed with 

desiccant, stored ≤ 14 days at room temperature, then –20 °C. EDTA samples were 

stored 2–8 °C and processed within 48 h. RNA was isolated (QIAamp RNA Blood Mini 

for EDTA; Zymo Quick-RNA Microprep for DBS) with on-column DNase. Yield and 

purity measured spectrophotometrically (A₂₆₀/A₂₈₀ 1.95–2.10). Samples passing ΔCt (no-

RT ≥ 10) and replicate SD ≤ 0.3 proceeded to analysis. Reference-gene Ct values served 

as integrity proxies. SYBR Green chemistry (QuantStudio 5). Primers (Table 1) met 

efficiency (90–110 %) and single-peak criteria. Normalization to geometric mean of 

GAPDH and HPRT1 validated by geNorm and NormFinder (13, 14). Relative 
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quantification via 2⁻ΔΔCt. Means ± SD, t-tests or Mann–Whitney as appropriate. 

Pearson and partial (age/sex-adjusted) correlations for transcripts vs biochemical 

indices. Logistic regression for moderate/severe IDA. ROC AUC for CIS (mean z-CD3E 

– z-IL10), with 10-fold cross-validation. α = 0.05. 

 

3. RESULTS: 

 

Analytical validation 

Gene Efficiency % R² Amplicon (bp) Peak pattern 

CD3E 97.4 0.992 112 Single 

CD4 98.1 0.993 104 Single 

CD8A 99.0 0.991 120 Single 

IL10 95.3 0.994 98 Single 

GAPDH 101.2 0.997 101 Single 

HPRT1 100.4 0.996 94 Single 

Reference-gene stability was confirmed (geNorm M = 0.56; V₂/₃ = 0.11; NormFinder 0.23). Intra- and inter-assay CVs 

were 3.8 % and 4.5 %, respectively. 

 

RNA yield and purity 

Metric EDTA DBS p 

Yield (µg) 4.2 ± 1.1 3.1 ± 1.0 0.002 

A₂₆₀/₂₈₀ 1.98 ± 0.03 1.97 ± 0.04 0.45 

QC pass rate (%) 96 94 0.62 

Yield loss from DBS was counterbalanced by comparable purity and Ct precision. All NTC and no-RT controls were 

negative, indicating absence of contamination. 

 

Results: 

Children with moderate/severe IDA displayed lower CD3E (ΔΔCt mean –0.62 ± 0.20, p = 

0.04) and higher IL10 (+0.55 ± 0.19, p = 0.04) expression relative to mild cases, while 

CD4 and CD8A showed downward but non-significant trends. CD3E positively 

correlated with ferritin (r = 0.29, p = 0.004) and weakly with Ret-He (r = 0.21, p = 0.06); 

IL10 correlated negatively with Hb (r = –0.22, p = 0.03). The CD3E–IL10 relationship 

was inverse (r = –0.25, p = 0.02), suggesting reciprocal T-cell and counter-regulatory 

dynamics.Linear models showed CD3E as a positive predictor of hemoglobin (β = 0.31, p 

= 0.01), IL10 as a negative predictor (β = –0.25, p = 0.03). The CIS combined index 

achieved AUC 0.79 (95 % CI 0.70–0.88), with cross-validated AUC 0.78 ± 0.05 and 

balanced sensitivity (72 %) and specificity (74 %). Results were consistent across DBS 

and EDTA (p interaction > 0.2). Subgroup analysis showed age modestly modified 

signal strength (CIS–Hb r = 0.33 in <5 years vs 0.21 ≥5 years). Sex had no effect. 

Hepcidin was negatively correlated with CD3E (r = –0.26, p = 0.02) and positively with 

IL10 (r = 0.27, p = 0.02), supporting the immune-iron regulatory link. DBS storage 

duration (≤ 14 days) had no impact on Ct values (p > 0.5), validating short-term 

ambient stability. 

 

4. DISCUSSION:  

 

The assay met MIQE criteria throughout, including efficiency within 95–105 % and 

linearity R² ≥ 0.99. DBS yielded slightly less RNA but retained purity and Ct precision 
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comparable to EDTA, demonstrating that quantitative accuracy is preserved with field-

ready collection. 

 Dual reference-gene normalization (GAPDH + HPRT1) minimized matrix bias 

and ensured inter-plate stability. Intra/inter-assay CVs under 5 % affirmed technical 

reproducibility, satisfying MIQE and allowing inter-laboratory transferability. The 

inverse relationship between CD3E and IL10 captures a biologically coherent immune-

iron interaction: as iron restriction intensifies, T-cell transcriptional activity wanes 

while anti-inflammatory signaling rises. This recapitulates experimental evidence that 

iron deficiency dampens T-cell effector function and that IL-10–driven tolerance 

sustains hepcidin-mediated iron sequestration. By integrating CIS with conventional 

indices (ferritin, Ret-He, hepcidin), clinicians gain context on whether anemia reflects 

simple deficiency or inflammatory lockdown…rather than purely nutritional deficiency. 

This distinction matters in pediatric practice, where inflammatory anemia and iron 

deficiency frequently overlap. The CIS (CD3E–IL10 composite) functioned as an 

interpretable metric capturing this immunohematologic balance, achieving cross-

validated AUC 0.78, which is notable given biological heterogeneity and field sample 

variability. The strong equivalence between EDTA and DBS matrices confirms that 

field-collected DBS samples, if stored properly, can retain qPCR-grade RNA integrity 

for up to two weeks. This expands feasibility for humanitarian and low-resource 

deployments where phlebotomy, cold chain, or immediate centrifugation are not viable. 

The short workflow—from finger-prick DBS to qPCR quantification—enables 

decentralized screening and aligns with WHO’s recommendation for affordable 

diagnostic decentralization. Beyond anemia, the analytical framework exemplifies how 

MIQE-disciplined molecular quantification can bridge clinical hematology and immune 

diagnostics. Because CD3E and IL10 reflect distinct regulatory nodes—activation and 

tolerance—they could be incorporated into multiplex panels for monitoring vaccine 

responses, infection recovery, or nutritional immunology interventions. The study’s 

demonstration that dual reference-gene normalization and melt-curve verification 

suffice for DBS ensures replicability even in small laboratories. While cross-sectional, 

the findings justify longitudinal validation to evaluate whether CIS predicts 

hemoglobin recovery or iron therapy responsiveness. Sample size limited power for 

stratified subgroup analysis (e.g., malaria exposure, under-5 vs school-age). Protein-

level correlation (flow cytometry or ELISA) and single-cell transcriptomics could further 

clarify cellular contributors. Technological adaptation to isothermal platforms (e.g., RT-

LAMP with lateral flow) could enable true point-of-care deployment in rural clinics. 

 

5. CONCLUSION: 

 

A four-gene immune-transcript assay (CD3E, CD4, CD8A, IL10) met MIQE standards 

and maintained analytical reliability when applied to dried blood spots. CD3E and IL10 

provided stable, biologically relevant axes reflecting T-cell competence and counter-

regulation. The resulting Combined Immune Score improved classification of IDA 

severity and remained consistent across sample matrices. This compact, reproducible 

workflow bridges laboratory precision and field practicality, offering a scalable 

diagnostic tool for anemia surveillance in low-resource settings. 
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