Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)



# Some Results on Domination Parameters in Graphs: A Special Reference to 2-Rainbow Edge Domination

G. SURESH SINGH HADIS NOZARPOUR Department of Mathematics University of Kerala Kerala, India

#### Abstract:

Let G = (V, E) be a graph, and let g be a function that assigns to each edge a set of colors chosen from the power set of  $\{1,2\}$  that is,  $g:E(G) \rightarrow \mathcal{P}$   $\{1,2\}$ . If for each edge  $e \in E(G)$  such that  $g(e) = \phi$ ,we have  $\bigcup_{f \in N(e)} g(f) = \{1,2\}$ , then g is called 2-Rainbow edge domination function (2REDF) and the weight denoted by w(g) of a function is defined as  $w(g) = \sum_{f \in E(G)} |g(f)|$ .

The minimum weight of 2REDF is called 2-rainbow edge domination number (2REDN) of G which denoted by  $\gamma'_{r^2}$  (G). In this paper we try to determine the value of 2REDN for several classes of graphs.

**Key words:** Spider graph, 2rainbow edge domination, 2-rainbow edge domination number, bistar, line graph

## 1. Introduction

The dominating set of a graph G = (V, E) is the subset  $S \subseteq V$  such that every vertex  $v \in V$  is either an element of S or is adjacent to some element of S.

A dominating set S is a minimal dominating set if no proper subset  $S' \subset S$  is a dominating set. The cardinality of

minimal dominating set of G is called domination number of G which is denoted by  $\gamma(G)$ . The open neighborhood N(v) of  $v \in V(G)$  is the set of vertices adjacent to v and the set  $N[v] = N(v) \cup \{v\}$  is the closed neighborhood of v. For any number "n" .[n] denotes the smallest integer not less than "n" and [n] denotes the greatest integer not greater than "n". An edge "e" of a graph G is said to be incident with the vertex v if v is an end vertex of e. Two edges e and f which incident with a common vertex v are said to be adjacent. A subset  $F \subseteq E$  is an edge dominating set if each edge in E is either in F or is adjacent to an edge in F. An edge dominating set F is called minimal if no proper subset F' of F is an edge dominating set.

The edge domination number  $\gamma'(G)$  is the cardinality of minimal edge dominating set. The open neighborhood of an edge  $e \in E$  is denoted as N(e) and it is the set of all edges adjacent to e in G, further  $N[e]=N(e)\cup\{e\}$  is the closed neighborhood of "e" in G.

For all terminology and notations related to graph theory not given here we follow [4]. The motivation of domination parameters are obtained from [5] and [6]. This work is mainly based on [1], [2] and [3].

## 2. 2-Rainbow edge domination function

Let G=(V,E) be a graph and let g be a function that assigns to each edge a set of colors chosen from the power set of {1,2} i.e., g:E(G) $\rightarrow \mathcal{P}$  {1,2}. If for each edge  $e \in E(G)$  such that  $g(e) = \phi$ ,we have  $\bigcup_{f \in N(e)} g(f) = \{1,2\}$ , then g is called 2-Rainbow edge domination function(2REDF) and the weight w(g) of a function is defined as w(g) =  $\sum_{f \in E(G)} |g(f)|$ .

The minimum weight of 2REDF is called 2-rainbow edge domination number (2REDN) of G which denoted by  $\gamma'_{r2}$  (G).

G.Suresh Singh, Hadis Nozarpour- Some Results on Domination Parameters in Graphs: A Special Reference to 2-Rainbow Edge Domination

**Theorem 2.1** For any graph G,  $\gamma'_{r2}(G) = \gamma_{r2}(L(G))$ . **Proof** Let G be a graph with edges  $e_1, e_2, \dots, e_q$  and vertices  $v_1, v_2, \dots, v_q$  where  $e_i$  corresponding to  $v_i$ ,  $i = 1, 2, \dots, q$  and let H=L(G) and  $g:V(H) \rightarrow \mathcal{P}(\{1,2\})$  be 2RDF with minimum weight  $w(g) = \gamma_{r2}(H) = \gamma_{r2}(L(G)) = t \longrightarrow (1)$ 

Now let g': E(G)  $\rightarrow \mathcal{P}(\{1, 2\})$ . By the definition of line graph, there exist a 1-1 and on-to function between the vertices of line graph of G, i.e., V(H), and edges of G, i.e., E(G), such that  $g'(e_i) = g(v_i)$ , for every  $e_i \in E(G)$  and  $v_i \in V(G)$ . It follows that  $g'(e_i) = \emptyset$  implies that  $g(v_i) = \emptyset$  for all i=1,2,...,q and since g is a  $\bigcup_{e j \in N[ei]} g'(e_j) = \bigcup_{v j \in N[vi]} g(v_i) = \{1, 2\}.$ 2RDF; Hence  $g': E(G) \rightarrow \mathcal{P}(\{1, 2\})$  is a 2REDF and  $w(g') = \sum_{i=1}^{q} g'(e_i) =$  $\sum_{i=1}^{q} g(v_i) = t$ . But we know that  $\gamma'_{r_2}(G)$  is the minimum weight of 2REDF g',and hence  $\gamma'_{r2}(G)$  should be  $\leq$  t. It remains to show that  $\gamma'_{r2}(G) = t$ . Let  $h': E(G) \to \mathcal{P}\{1, 2\}$  be a 2REDF in G so that  $w(h') = \sum_{i=1}^{q} h'(e_i) < t$ . It means there exist a 2RDF on H, h: V(H)  $\rightarrow \mathcal{P}(\{1, 2\})$  defined as h(v<sub>i</sub>) = h'(e<sub>i</sub>) which implies w(h) = w(h') < t , is a contradiction to (1). Hence  $\gamma'_{r2}(G)$  = t. and  $\gamma'_{r2}(G) = \gamma_{r2}(L(G)).$ 

**Corollary2.2** 2- rainbow edge domination function is NP-Complete.

**Proposition 2.3** For any graph G = (V, E),  $\gamma'_{r^2}(G) = \gamma (H \times K_2)$ , where H is the line graph of G.

**Proof** By using previous theorem and the result  $\gamma_{rk}(G) = \gamma$  ( $G \times K_k$ ), if we substitute L(G) instead of G we have  $\gamma_{rk}(L(G)) = \gamma$  (L(G) × K<sub>k</sub>) and hence  $\gamma'_{r2}(G) = \gamma$  (L(G) × K<sub>k</sub>). If k = 2 and L(G) = H, then  $\gamma'_{r2}$  (G) =  $\gamma$  (H× K<sub>2</sub>). Hence the proof.

**Proposition 2.4** For any path  $P_n$  with  $n \ge 3$ , we have

$$\gamma'_{r2}(P_n) = \begin{cases} \frac{n}{2} & if & n \text{ is even} \\ \frac{n+1}{2} & if & n \text{ is odd} \end{cases}$$

**proof** We know that  $L(P_n) = P_{n-1}$  and by using the result  $(\gamma_{r2}(P_n) = \lfloor \frac{n}{2} \rfloor + 1)$ , we can write,  $\gamma'_{r2}(P_n) = \gamma_{r2}(L(P_n)) = \gamma_{r2}(P_{n-1}) = \lfloor \frac{n-1}{2} \rfloor + 1$ , and  $\lfloor \frac{n-1}{2} \rfloor = \begin{cases} \frac{n-2}{2} & for & n \text{ is even} \\ \frac{n-1}{2} & for & n \text{ is odd} \end{cases}$ 

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 6 / September 2015

G.Suresh Singh, Hadis Nozarpour- Some Results on Domination Parameters in Graphs: A Special Reference to 2-Rainbow Edge Domination

| when                                                                                             | n≥ 3.                                           | Hence     | we | get |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|----|-----|
| $\chi'_{-1}(\mathbf{D}) = \int_{-\infty}^{\underline{n}}$                                        | $\frac{2}{2} + 1$                               | n is even |    |     |
| $\gamma r2(\Gamma n) - \left\{ \begin{array}{c} r \\ r $ | $\frac{1}{2}+1$                                 | n is odd  |    |     |
| that is $y'$ (I                                                                                  | $\left(\frac{n}{2}\right) = \int \frac{n}{2}$   | n is even |    | -   |
| tilat 18 γ r2(1                                                                                  | $\binom{n}{2} = \left\{ \frac{n+1}{2} \right\}$ | n is odd  |    |     |

**Proposition 2.5** For any cycle  $C_n$  with n vertices

$$\begin{array}{ll} \gamma'_{r2} & (C_{n}) \\ \begin{cases} \frac{n}{2} & if & n \equiv 0 & (mod \ 4) \\ \frac{n+2}{2} & if & n \equiv 2 & (mod \ 4) \\ \frac{n+1}{2} & if & n \equiv 1 \ or \ 3 & (mod \ 4) \end{array}$$

**Proof** We know that  $L(C_n) = C_n$ . Next, let  $C_n$  be a cycle with n vertices, then by using the results  $:\gamma_{r2}(C_n) = \lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{4} \rfloor - \lfloor \frac{n}{4} \rfloor$  and  $\gamma'_{r2}(C_n) = \gamma_{r2}(L(C_n)) = \gamma_{r2}(C_n)$ , we have  $\gamma'_{r2}(C_n) = \lfloor \frac{n}{2} \rfloor + \lfloor \frac{n}{4} \rfloor - \lfloor \frac{n}{4} \rfloor$ . This implies that

a) If 
$$n\equiv 0 \pmod{4}$$
 then  $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil \cdot \lfloor \frac{n}{4} \rfloor = \frac{n}{2}$ .  
b) If  $n\equiv 2 \pmod{4}$  then  $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil \cdot \lfloor \frac{n}{4} \rfloor = \frac{n}{2} + \frac{n+2}{4} - \frac{n-2}{4} = \frac{2n+n+2-n+2}{4}$   
 $= \frac{2n+4}{4} = \frac{n+2}{4}$   
c) If  $n\equiv 1 \pmod{4}$  then  $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil \cdot \lfloor \frac{n}{4} \rfloor = \frac{n-1}{2} + \frac{n+3}{4} - \frac{n-1}{4} = \frac{2n-2+n+3-n+1}{4} = \frac{2n+2}{4} = \frac{n+1}{2}$  d) If  $n\equiv 3 \pmod{4}$  then  $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil \cdot \lfloor \frac{n}{4} \rfloor = \frac{n-1}{2} + \frac{n+3}{4} - \frac{n-1}{4} = \frac{2n-2+n+3-n+1}{4} = \frac{2n+2}{4} = \frac{n+1}{2}$  d) If  $n\equiv 3 \pmod{4}$  then  $\lfloor \frac{n}{2} \rfloor + \lceil \frac{n}{4} \rceil \cdot \lfloor \frac{n}{4} \rfloor = \frac{n-1}{2} + \frac{n+1}{4} - \frac{n-3}{4} = \frac{2n-2+n+1-n+3}{4} = \frac{2n+2}{4} = \frac{n+1}{2} \cdot \Box$ 

**Proposition 2.6** For any star  $K_{1,n}$ ,  $n \ge 2$ ,  $\gamma'_{r2}(K_{1,n}) = 2$ **proof** It is known that the line graph of  $K_{1,n}$  is the complete graph  $K_{n+1}$  and hence  $\gamma'_{r2}(K_{1,n}) = \gamma_{r2}(L(K_{1,n})) = \gamma_{r2}(K_{n+1})$ = 2.

**Theorem 2.7** If  $G \cong K_{m,n}$  for  $2 \le m \le n$ , then

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 6 / September 2015

=

G.Suresh Singh, Hadis Nozarpour- Some Results on Domination Parameters in Graphs: A Special Reference to 2-Rainbow Edge Domination

 $\gamma_{r^2}(G) = \begin{cases} 2(m-1) & \text{ if } m = n \\ 2m & \text{ otherwise } \end{cases}$ 

**Proof** Let the bipartite sets of G are  $A=\{v_1, v_2, ..., v_m\}$  and  $B=\{u_1, u_2, ..., u_n\}$  and the edges  $e_{11}=v_1u_1$ ,  $e_{22}=v_2u_2$ , ...,  $e_{ij}=v_iu_j$ ; i=1,...,m and j=1,2,...,n as shown in the following figure



 $v_1 \qquad v_2 \ldots \quad v_m$ 

| Now,                                          | let   | g: | <b>E</b> (G)                                    | $\rightarrow$ | $\mathcal{P}(\{1,2\})$ | defined | as; |
|-----------------------------------------------|-------|----|-------------------------------------------------|---------------|------------------------|---------|-----|
|                                               | ( {1} |    |                                                 |               | for i =                | j = 1   |     |
| $g(e_{ij}) = \begin{cases} \\ \\ \end{cases}$ | {2}   |    |                                                 |               | for i =                | j = 2   |     |
|                                               | {1,2} |    | for $e_{ij}$ where $i = j$ and $i, j \neq 1, 2$ |               |                        |         |     |
|                                               | ιø    |    | otherwise                                       |               |                        |         |     |

Clearly  $e_{12} = \emptyset$  and its neighbors are  $e_{11}$  and  $e_{22}$ . Hence  $\bigcup_{j=1}^{m} g(e_{1j}) = \{1,2\}$  and  $e_{11}$  and  $e_{22}$  belongs to  $N[e_{1j}]$ . Since  $e_{21} = \emptyset$  and its neighbors are  $e_{11}$  and  $e_{22}$  hence  $\bigcup_{j=1}^{n} g(e_{2j})$ .

={1,2} and  $e_{11}$  and  $e_{22}$  belongs to  $N[e_{2j}]$ .

Moreover for every  $e_{ij}$ , i=3,4,...,m and j=1,2,...,n. It is clear that  $\bigcup_{e_{ii}\in N[e_{ij}]} g(e_{ij})=\{1,2\}$ ; for i=3,4,...,m and j=1,2,...,n. It follows that  $g:E(G) \rightarrow \mathcal{P}(\{1,2\})$  is 2REDF.

Since (m-2) edges have assigned to {1, 2} and two edges have assigned to {1} or {2} w(g) = 2m-2=2(m-1). Hence  $\gamma'_{r^2}(G) \leq 2(m-1)$  for m= n and m,n $\geq 2$ . If m≠n; m edges have the weight {1,2} and hence  $\gamma'_{r^2}(G) = 2m$ .

**Definition** Let G be the complete bipartite graph  $K_{1,n}$ . The graph which obtained by subdivision of every edge once is called spider graph of 2n edges and 2n+1 vertices.

G.Suresh Singh, Hadis Nozarpour- Some Results on Domination Parameters in Graphs: A Special Reference to 2-Rainbow Edge Domination

**Theorem 2.8** For any spider graph  $G, \gamma'_{r2}(G) = n+1$ . **Proof** Consider the spider graph G given in the following figure

v



Let  $vv_1 = e_{11}, vv_2 = e_{12}, \dots, vv_n = e_{1n}$  and  $v_1u_1 = e_{21}, v_2u_2 = e_{22}, \dots, v_nu_n = e_{2n}$ . Let g: E (G)  $\rightarrow \mathcal{P}(\{1, 2\})$  defined as follows

$$g(e_{ij}) = \begin{cases} \{1,2\} & \text{for } i = j = 1\\ \{1\} \text{ or } \{2\} \text{ for } e_{2j}, j = 2,3, \dots, n\\ \emptyset & otherwise \end{cases}$$

for any  $e_{1j} = \emptyset$ ; j = 2,3,...,n;  $\bigcup_{j=1}^{n} g(e_{1j}) = \{1,2\}$  and  $e_{1j}$ ,  $e_{2j} \in N[e_{2j}]$ . Also  $e_{21} = \emptyset$  and  $\bigcup_{i=1,2} g(e_{i1}) = \{1,2\}$ . Hence g is a 2REDF and w(g)=(n-1)+2=n+1 and  $\gamma'_{r^2}$  (G) $\leq$ n+1  $\rightarrow$ (1).

Now, we show that  $\gamma'_{r2}$  (G)=n+1. Suppose not. That is  $\gamma'_{r2}$  (G) < n+1. That is, min(w(g)) < n+1. It means that the edge  $e_{1j}$ ,  $e_{2j}$  j=1,2,..,n can be assign in many cases; **Case 1** If  $e_{2j} = \emptyset$  for j=1,2,..,n, then  $e_{1j}$ 's, j=1,2,..,n, should assign to {1,2} and hence w(g) = 2n , is a contradiction to (1). **Case 2** If  $e_{2j} = \{1,2\}$  for j=1,2,..,n, then  $e_{1j}$ 's , j=1,2,..,n, should assign to $\emptyset$  and hence w(g) = 2n , is a contradiction to (1). **Case 3** If  $e_{21} = \emptyset$ ,  $e_{11} = \{1,2\}$  and  $e_{2j} = \{1\}$  or  $\{2\}$  for j=2,3,...,n, then w(g) = (n-1) +2= n+1, is a contradiction to (1). **Case 4** If we map  $e_{2t}$ , for 1 < t < n to  $\emptyset$  then the edges  $e_{1t}$ , 1 < t < n must be map to  $\{1,2\}$  and hence w(g) = 2t+(n-t) = n+t, is a contradiction to (1).

**Case 5** If  $e_{1j}$ 's and  $e_{2j}$ 's ={1} or {2} for j=1,2,...,n, that is all edges assign to {1} or {2} then w(g) = 2n, is a contradiction to (1).

In all cases we get contradiction and hence  $\gamma'_{r^2}$  (G)=n+1 for any spider graph G.

**Definition** If we subdivide s edges  $1 \le s \le n-1$  of  $K_{1,n}$  then the resultant graph is called wounded spider.

**Theorem 2.9** For any wounded spider graph G with n + s edges,  $\gamma'_{r2}$  (G)= s + 1.



**Proof** Let  $vv_1 = e_{11}, vv_2 = e_{12}, \dots, vv_n = e_{1n}$  and  $v_1u_1 = e_{21}, v_2u_2 = e_{22}, \dots, v_su_s = e_{2s}$ , Let g:E(G)  $\rightarrow \mathcal{P}(\{1,2\})$  defined as follows

$$g(e_{ij}) = \begin{cases} \{1,2\} & \text{for } i = j = 1\\ \{1\} \text{ or } \{2\} \text{ for } e_{2j}, j = 2,3, \dots, n\\ \emptyset & \text{otherwise} \end{cases}$$

We have  $e_{1j} = \emptyset$  for j = 2, 3, ..., n and  $\bigcup_{j=1}^{n} g(e_{1j}) = \{1, 2\}$ . Also  $e_{21} = \emptyset$  and  $\bigcup_{i=1,2} g(e_{i1}) = \{1, 2\}$ . Hence g is a 2REDF and w (g) = (s - 1) + 2 = s + 1 implies  $\gamma'_{r2}$  (G)  $\leq s + 1$ . If we us the technique used as in the previous theorem, we can prove  $\gamma'_{r2}$  (G) = s + 1.

**Definition:** Let G=(V,E) be a graph and  $g:E(G) \rightarrow \mathcal{P}(\{1,2\})$  be a 2REDF with minimum weight then g can partition the edges of G into the following sets:

$$\begin{split} \mathbf{E}_{0} &= \{ \ e_{i} \in E(G); \ g(e_{i}) = \emptyset \ , i = 1, 2, \dots, n \} \\ {}^{1}\mathbf{E}_{1} &= \{ \ e_{i} \in E(G); \ g(e_{i}) = \{1\} \ , i = 1, 2, \dots, n \} \\ {}^{2}\mathbf{E}_{1} &= \{ \ e_{i} \in E(G); \ g(e_{i}) = \{2\} \ , i = 1, 2, \dots, n \} \\ \mathbf{E}_{2} &= \{ \ e_{i} \in E(G); \ g(e_{i}) = \{1, 2\} \ , i = 1, 2, \dots, n \} \end{split}$$

**Theorem 2.10** Let G be a graph and g:E(G)  $\rightarrow \mathcal{P}(\{1,2\})$  be 2REDF with w(g) =  $\gamma'_{r2}$  (G) and g partitioned the edges in to E<sub>0</sub>,

 $^1E_1\,,\,^2E_1\,,\;\;E_2\,,$  then no edge in  $E_2$  is adjacent to any edge in  $\,^1E_1\,,\,^2E_1\,.$ 

**Proof** we define g:E(G) →  $\mathcal{P}(\{1,2\})$  with smallest weight w(g) =  $\gamma'_{r^2}$  (G). Suppose  $e, e' \in E(G)$ , where  $e \in E_2$  and  $e' \in {}^{1}E_1, {}^{2}E_1$ . On the contrary suppose e be adjacent to e' and  $g(e) = \{1,2\}$ , and  $g(e') = \{1\}$  or  $\{2\}$ , we can construct g':E(G) →  $\mathcal{P}(\{1,2\})$  by defining g'(e') = $\emptyset$  which implies g' is a 2REDF in G and w(g') < w (g) which contradiction.  $\Box$ 

**Definition** A bistar is a tree obtained from the graph  $K_2$  with two vertices u and v by attaching m pendent edges in u and n pendent edges in v and denoted by B(m, n). **Theorem 2.11** For any connected graph G,  $\gamma'_{r^2}$  (G) =2 if and only if  $G \cong B(m, n)$  where m and n not both zero.

**Proof** If  $G \cong B(m,n)$  and  $(m,n \neq 0)$ , then by theorem 2.1 and fact that line graph of B(m,n) is two complete graphs say  $K_m$  and  $K_n$  with a common vertex we have  $\gamma'_{r2}(G) = 2$  (Note that if m, n=0 then G is complete bipartite graph and  $\gamma'_{r2}(G) = 2$ ). Conversely if  $\gamma'_{r2}(G)=2$ , then there exist a function g:  $E(G) \rightarrow \mathcal{P}(\{1,2\})$  such that w(g) = 2, that is  $|E_0| + |{}^{1}E_1| + |{}^{2}E_1| + |E_2| = 2$  then

If  $|E_2| \neq 0$  then  $|E_2| = 2$  and  $|E_0| + |^{1}E_1| + |^{2}E_1| = 0$ hence  $G \cong B(m, n)$ .

 $| E_2 | = 0$  then  $| E_0 | + | {}^{1}E_1 | + | {}^{2}E_1 | = 2$ If either  $| E_0 | = 0$  and  $| E_1 | = 0$  and  $| E_1 | = 2$  $|E_0| = 0$  and  $|E_1| = 2$  and  $|E_1| = 0$ or  $| E_0 | = 0$  and  $| {}^{1}E_{1}$ =  $^{2}E_{1}$ or = 1 all G ≅  $P_3$ and cases B(0, 1). ≅ Hence  $G \cong B(m, n)$ . 

**Observation 2.12** For any graph G,  $1 \le \gamma'_{r^2}(G) \le q$ , where *q* is the number of edges in G.

**Proof** For any non trivial graph G, if the function ; g:E(G)  $\rightarrow \mathcal{P}(\{1,2\})$  defined as  $g(e_i) = \{1\}$  or  $\{2\}$  then w(g) = q. Also if G = K<sub>2</sub> then  $\gamma'_{r2}(K_2)=1$ . Hence  $1 \leq \gamma'_{r2}(G) \leq q$ .  $\Box$ 

G.Suresh Singh, Hadis Nozarpour- Some Results on Domination Parameters in Graphs: A Special Reference to 2-Rainbow Edge Domination

**Proposition 2.13** For any graph G,  $\gamma'(G) \leq \gamma'_{r^2}(G) \leq 2\gamma'(G)$ . **Proof** Since  $\gamma'_{r^2}(G) = \gamma$  (L(G)× K<sub>2</sub>) and by Vizing's conjecture ;  $\gamma$  (G× H)  $\geq \gamma$  (G).  $\gamma$  (H). But, we have  $\gamma'_{r^2}(G) = \gamma_{r^2}(L(G)) = \gamma$  (L(G)× K<sub>2</sub>)  $\geq \gamma$  (L(G)).  $\gamma$  (K<sub>2</sub>) =  $\gamma'(G)$  and hence  $\gamma'_{r^2}(G) \geq \gamma'(G)$ .

For the upper bound,

Let S be the minimum edge dominating set in G and let g:E(G)({1 2} for  $e_i \in S$  i = 12 n

 $\rightarrow \mathcal{P}(\{1,2\}) \text{ defined as } \mathbf{g}(e_i) = \begin{cases} \{1,2\} \text{ for } e_i \in \mathbb{S} & i = 1,2, \dots, n \\ \emptyset & \text{otherwise} \end{cases}$ 

It is clear that g is 2REDF and w (g) =  $2\gamma'(G)$ . Thus  $\gamma'_{r^2}(G) \le 2\gamma'(G)$  and hence  $\gamma'(G) \le \gamma'_{r^2}(G) \le 2\gamma'(G)$ .  $\Box$ 

**Definition** A graph G is called 2-rainbow edge graph if  $\gamma'_{r^2}$  (G) = 2  $\gamma'$ (G).

**Example**  $P_3$  is a 2-rainbow edge graph.

**Notation** The definition can be generalize to k-rainbow edge graph.

**Theorem 2.14** For any graph G,  $\gamma'_{r^2}(G) \le q - \Delta'(G) + 1$ where  $\Delta'(G)$  is the maximum edge degree in G. **Proof** Let G= (V, E) be a graph with n vertices with maximum edge degree  $\Delta'(G)$ . Let  $f \in E(G)$ . Without lose of generality we let deg(f) =  $\Delta'(G)$ , and g: E (G)  $\rightarrow \mathcal{P}(\{1, 2\})$  be defined as;

|                    | ({1,2}     | for | $e_i = f$ , | i = 1, 2,, n      |
|--------------------|------------|-----|-------------|-------------------|
| $g(e_i) = \langle$ | {1} or {2} |     | for         | $e_i \notin N(f)$ |
|                    | Ø          |     | for         | $e_i \in N(f)$    |

Since for  $e_i \in N(f)$ ,  $g(e_i) = \emptyset$ ,  $\bigcup_{e_i \in N[f]} g(e_i) = \{1,2\}$ . Then it is clear that g is 2REDF and  $w(g) = (q - 1 - \Delta'(G)) + 2 = q - \Delta'$ (G) + 1 hence  $\gamma'_{r^2}$  (G)  $\leq q - \Delta'$  (G) + 1.

**Remark** The bound is sharp for  $G \cong P_{3.}\Box$ 

**Corollary 2.15** For any graph G,  $\gamma'_{r2}$  (G)  $\leq q - \delta'$  (G) + 1.

**Theorem 2.16 Let** G(V,E) be a graph without isolated vertices  $\gamma(G) = \gamma'_{r^2}$  (G)=1 if and only if G=K<sub>2</sub>. **Proof:** If G=K<sub>2</sub> then it is clear that  $\gamma$  (G) =  $\gamma'_{r^2}$  (G)=1. Conversely, if  $\gamma(G) = \gamma'_{r^2}$  (G), then the 2REDF with minimum

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 6 / September 2015

weight is  $g:E(G) \rightarrow \mathcal{P}(\{1,2\})$  defined as ;  $g(e) = \{1\}$  or  $\{2\}$ , that is there is only one edge in G. Since G has no isolated vertices,  $G=K_2$ .  $\Box$ 

**Theorem 2.17:**  $\gamma'_{r^2}$  (G) = q if and only if G  $\cong$  mP<sub>2</sub> or mP<sub>3</sub> where m  $\ge 1$ .

**Proof:** If G= mP<sub>2</sub>, then  $\gamma'(G) = m$ , similarly if G= mP<sub>3</sub> then  $\gamma'(G) = 2m = q$ .

Conversely, if  $\gamma'_{r^2}(G) = q$  and g:E(G)  $\rightarrow \mathcal{P}(\{1,2\})$ , be a 2-REDF with w(g) = q, we have two cases;

**case 1** If  $g(e) \neq \emptyset$  for every  $e \in E(G)$  then  $G=K_2$  or  $mK_2$ . **case 2** If there exist at least one edge  $e_i \in E(G)$  such that  $g(e_i) = \{1,2\}$  then  $G=K_3$  or  $mK_3$ .  $\Box$ 

#### Acknowledgement

The second author wishes to thank university of Kerala for providing all facilities to do this research work.

#### REFERENCES

[1] B. Brešar, M. A., Henning, D. F. Rall, 2008, Rainbow domination in graphs, Taiwan journal of Mathematics 12, 213-225.

[2] B. Brešar .T. K. Šumenjak, on the 2-rainbow domination in graphs, Discrete Applied Mathematics 155 (2007) 2394-2400.
[3] G. J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Applied Mathematics 158 (2010) 8-12.

[4] G. Suresh Singh, Graph Theory, PHI Learning Private Limited, New Delhi, 2010.

[5] T. W. Haynes, S.T. Hedetniemi, P.J. slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

[6] T.W. Haynes, S.T. Hedetniemi, P.J. slater (eds). Domination in graph: Advanced Topic, Marcel Dekker, New York, 1998.