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Abstract: 

As we cannot integrate every function so it is not possible to 

solve every differential equation. Even the differential equation of first 

order and first degree cannot be solved in every case. They can be 

solved, however, if they belong to standard forms. During the past half-

century, the growth in power and availability of digital computers has 

led to an increasing use of realistic mathematical models in science 

and engineering, and numerical analysis of increasing sophistication 

has been needed to solve these more detailed mathematical models of 

the world. The formal academic area of numerical analysis varies from 

quite theoretical mathematical studies to computer science issues. 

 

Key words: Multistep Algorithm, Applied Sciences, Engineering 

 

 

1.1 Introduction:  

 

Linear multistep methods are used for the numerical solution of 

ordinary differential equations. Conceptually, a numerical 

method starts from an initial point and then takes a 

short step forward in time to find the next solution point. The 

process continues with subsequent steps to map out the 

solution. Single-step methods (such as Euler's method) refer to 



Mohamad Mukheef Abed, Zenab Hasan- Implementation and Development of 

Multistep Algorithm Arising in Applied Sciences and Engineering 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 3 / June 2014 

3134 

only one previous point and its derivative to determine the 

current value. Methods such as Runge-Kutta take some 

intermediate steps (for example, a half-step) to obtain a higher 

order method, but then discard all previous information before 

taking a second step. Multistep methods attempt to gain 

efficiency by keeping and using the information from previous 

steps rather than discarding it. Consequently, multistep 

methods refer to several previous points and derivative values. 

In the case of linear multistep methods, a linear combination of 

the previous points and derivative values is used. In this 

research paper we are solving ordinary differential equation 

arising in electrical circuit and Rate of cooling by multiple step 

method and comparing the result by analytical method. The 

organization of this paper is as follow in section 1.2 we are 

describing Milne's method, in section 1.2 we are describing 

Adam's Bashford Method  finally  we are implementing the 

multistep method in electrical circuit and Rate of cooling and  

comparing the result obtained by multistep method with 

analytical solution  

 

1.2 Milne's method 

 

The methods of Euler, Heun, Taylor and Runge-Kutta are 

called single-step methods because they use only the 

information from one previous point to compute the successive 

point, that is, only the initial point  ),( 00 yt   is used to 

compute  ),( 11 yt   and in general  ky   is needed to 

compute  1ky .  After several points have been found it is 

feasible to use several prior points in the calculation.  The 

Milne-Simpson method uses kkkk yandyyy 123 ,,    in the 

calculation of 1ky .  This method is not self-starting;  four initial 

points  ),(),,(),,(),,( 33221100 ytandytytyt  must be given in 

advance in order to generate the points   4),( m

kk kyt .   
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A desirable feature of a multistep method is that the 

local truncation error (L. T. E.) can be determined and a 

correction term can be included, which improves the accuracy of 

the answer at each step.  Also, it is possible to determine if the 

step size is small enough to obtain an accurate value for  1ky , 

yet large enough so that unnecessary and time-consuming 

calculations are eliminated.  If the code for the subroutine is 

fine-tuned, then the combination of a predictor and corrector 

requires only two function evaluations of  f(t , y)  per step.  It 

requires past four points of the solution to predict the fifth 

value. The actual curve is approximated by a fourth degree 

polynomial. 

The Newton's formula can be written as 
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Integrating (1) over the interval x0 to x0 +4th or u = 0 to 4, we 

get 

duy
uuuu

y
uuu

y
uu

yuyhdxy
hx

x




















 



1

0

4

4

0
0

2'

0

2'

0

'

0

4

24

)3)(2)(1(

6

)2)(1(

2

)1(
'

0

0

 

(as dx = h du) 

]
90

28

3

8

3

20
84[ '

0

4'

0

3'

0

2'

0

'

004 yyyyhyy   



Mohamad Mukheef Abed, Zenab Hasan- Implementation and Development of 

Multistep Algorithm Arising in Applied Sciences and Engineering 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. II, Issue 3 / June 2014 

3136 

or '

0

4'

2

'

2

'

104
90

28
]22[

3

4
yhyyy

h
yy                   (4.2)     

                              

This is Milne's predictor formula. 

Also integrating (4.1) over the interval x0 to x0 + 2h or u = 0 

to 2,  

We get 
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This is Milne's corrector formula. 

Since x0... x4 are any five consecutive values of x, (4.2) and 

(4.3) can be written in general 

),22(
3

4 ''
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231 nnnnn yyy
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yy                     (4.4)                                          
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h

yy         (4.5)            

                      

It is to be noted that we have considered the difference s up 

to the third order, because we fit up a polynomial of degree 

four. 

The rerms containing 
'

0

4 y  are not used directly, but they 

give the principal parts of the errors in the two values of yn+1 

computed from (4.4) and (4.5). Note that this error in the (4.5) is 

of opposite sign to that of (4.4), but it is sufficiently less in 

magnitude. 
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As we have taken '4

90

28
yh  and '

90

4 y
h
  as the principal 

parts of the errors, we may take 
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Where yn+1 and yn+1
(1) are the predicted and first corrected 

values of y for x = xn+1. 

From these two 
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= 29 (E2). 

Where E2 is the principal part of the error in (4.5). Thus 

).(
29

1 )1(

112   nn yyE  

This shows that the error in (3.29) is 
29

1
the of the difference 

between the predicted and corrected values. 

The result helps in determining the error of each computed 

value or say judging the accuracy of the computed value.  If E2 

is small enough, proceed to the next interval. But if E2 is large 

enough it means the value of h is large enough and it must be 

decreased such as by taking its half etc. 
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Adam's Bashford Method:  

 

To find predictors. Suppose we are interested in finding a 

formula which uses the information of the function y (x) and its 

first derivative i.e. of y' = (x) f (x, y), at the past three points 

together with one more old value of the derivative. Such a most 

general linear formula is 

)( '

23
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22
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110221101   nnnnnnnn yByByByBhyAyAyAy  (4.6)        

                 

It involves seven unknowns. We shall make this formula exact 

for polynomials upto the degree four. the convenient choices are 

y(x) = 1, x, x2, x3, x4. Putting these values of y (x) respectively in 

(4.6) and assuming h = 1 i.e. assuming the unit spacing between 

the consecutive values of x, we get 
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These are five equations in 7 unknowns. Taking A1 and A2 as 

parameters and solving (4.7), we get 
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Here A1 and A2 are arbitrary. Taking A1 = A2 = 0, we get 
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Putting these values in (3.30), we get 

' ' ' '
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                 (4.9)                                   

This is known as Adam's Predictor formula. 

Putting another pairs of values of A1 and A2, we can find other 

predictor formulae. The formulae obtained from (4.9) are called 

Adam's Bashford type predictors. 

 

To find the local truncation error of Adam's predictor 

i.e. of (4.9). 
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Putting all these values, we get 
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Similar approach may be adapted to the truncation error of the 

other predictors also. 

 

To find correctors.  Like (4.6), the most general linear 

corrector formula that involves the information about the 

function and its first derivative at the past three points of the 

solution, together with an estimate of the derivative at the 

point being computed, is 
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As usual, making it exact for we get 
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These are also the five equations in seven unknowns. Taking a1 

and a2 as parameters, we get 
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The choice a1 = a2 = 0, which matches to some extent the 

Adam's predictor, gives 
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Various correctors can be found by taking the suitable values of 

a1 and a2. 

Proceeding as in the case of (4.9), it can be shown that corrector 

(4.12) has local truncation error .
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Note that the error in the corrector (4.12) is less enough than 

that of its predictor (4.9) 

The Milne-Type predictors can also be derived by using. 
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in place of (4.6). The main difference between (4.13), (4.6) is 

that here we have used an additional sat value of the function 

i.e. 
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Taking A2 = 0, A3 = 1, we get the Milne's predictor. 
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1.3 Implementation of multistep method in electrical 

circuit: 

The formation of differential equation for an electric circuit 

depends upon  the  following laws. 

 1. 
dq

i
dt

  

2. Voltage drop across resistance R=Ri 

3. Voltage drop across inductance L=
di

L
dt

              

4. Voltage drop across capacitance   
q

C
C

  

Kirchhoff’s laws:  

 Voltage law: The algebraic sum of the voltage drop 

around any closed circuit is equal to the resultant 

electromotive force in the circuit. 

 Current law: At a junction or node, current coming is 

equal to current going. 

(a) L-R series circuit: Let I be the circuit flowing in the 

circuit containing resistance and inductance L in series, 

with voltage source E, at any time t. 

By voltage law 
di

Ri L E
dt

       or        

(1)
di R E

i
dt L L
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This is the differential equation. 
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Its solution is .
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. ................(2)
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At                t=0                    

 The (2) becomes 
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(b)L-R-C series: Let I be current the circuit containing 

resistance R, inductance L, and capacitance C in series with 

voltage source, at any time t. 

By voltage law 

di q
Ri L E

dt c
  

  or  
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d q dq q
R L E

dt dt c
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1.4 Numerical Problem1: A coil having a Resistance of 15 

ohms and an Inductance of 10 henries is connected to 90 

volts supply. Determine the value of current of  after 2 

seconds.  

 

Solution-The governing equation may be written as 
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    So governing equation is 
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 Analytical solution: 

10 9 1.5
dI

I
dt

 
 

Integrating factor will become 
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1.56 6 6 6 0.05tI e I       

   at t=2,  I=5.7       
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Taylor series Solution: 

Since        

1.5 9
dI

I
dt
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Now putting   t=.5       in              (1)  

I (.5)=3.155275 

Now putting       t=1 

I (1)=4.359375 

Now putting t=1.5 

I (1.5)=3.2958985 

Adam Moltons method:    

0 (1.5) 3.2958985y y 
 

(1) 1 4.359375y y  
 

(1.5) 2 3.1555275y y  
 

0 3 0y y 
 

1 0 0 1 2 3[55 59 37 9 ]
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1 0 1 0 1[9 19 5 2]
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Mines method:  

3 1 1

4
[2 2 ]

3

c

n n n n n

h
y y f f f      

 

1 5.513446428c

ny  
 

 

1.5 Rate of cooling:  

Problem2: A body originally at 800 C Cools down to  60 0 C in 

20 minutes, the temperature of the air being 400 C what will be 

the temperature of the body after 40 minutes from the original.   

Analytical solution:  

0( )
dT

k T T
dt

  
 

Initial condition is when t=0      T=80 

40

dT
kdt

T
 

  
Log(T-40)=-kt+c log40=-c                                                                                                     

  

40
(1)

40
log

t
kt

 
  
 



 
t=20     T=60 

20 1
20 log[ ] 2 (2)

40 20
k k iog    

 
By (1)and(2)we have 

 

40 1
log ( log 2)

40 20

t
t

 


              
 when          t=40                                                               

240
2log 2 log 2

40

T 
  

 

40
40 10

4
T   
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050T c  
Numerical solution 

T=0     T=80 

( 40)
dT

k T
dt

  
                              0

40
dT

k
dt

 
   

   

 

2

2

d T dT
k

dt dt
 

                                

2
2

2

0

40
d T

k
dt

 
   

           
3 2

3 2

0

d T d T
k

dt dt

 
  

                              

3
2

3

0

40
d T

k
dt

 
   

   

4 3

4 3

d T d T
k

dt dt
 

                               

4
4

4

0

40
d T

k
dt

 
  

   

( 40)
dT

k T
dt

  
         t=0    T=40 
2 '' 3 4

1 '''
( ) ....

2! 3! 4!

ivt T t T t T
T t T tT     

 
2 3 4

2 3 436 36 36
(30) 80 36( 40 ) (40 ) ( 40 ) (40 )

2! 3! 4!
T k k k k      

 
2 3 4

2 3 437 37 37
(37) 80 37( 40 ) (40 ) ( 40 ) (40 )

2! 3! 4!
T k k k k      

 
2 3 4

2 3 438 38 38
(38) 80 38( 40 ) (40 ) ( 40 ) (40 )

2! 3! 4!
T k k k k      

2 3 4 5
2 3 4 539 39 39 39

(39) 80 39( 40 ) ( 40 ) ( 40 ) ( 40 ) ( 40 ).................................
2 3 4 5

T k k k k k          

 

Since K=0.03466 

T(36)=30.0896+31.13810-12.95096+4.03992 

T(36)=52.3166  

T(37)=28.7032+32.89202-14.0605+4.5079  

T(37)=52.04262  

T(38)=27.3168+34.69399-15.2316+5.015305  

T(38)=51.79424                                                 
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T(39)=25.9304+36.5440-16.46600+5.5644 

T(39)=51.57284 

  

T Say T F=-K(T-40), K=0.03466 

36 
3f  

52.3166 -0.42696 

37 
2f  

52.04262 -0.417397 

38 
1f  

51.79424 -0.408788 

39 
0f  

51.57284 -0.40115 

 

Adams-Moulton method: 

 1 0 0 1 2 355 59 37 9
24

p h
y y f f f f      

 

So 1

py
=51.1751 

1 0 1 0 1 29 19 5
24

c ph
y y f f f f 

      
 

1

cy
=51.177786 

 

Milne’S Method: 

 1 3 2 1

4
2 2

3

p

n n n n n

h
y y f f f      

 

1

py =51.0883643 

 1 1 1 14
3

c

n n n n n

h
y y f f f      

 

1

cy =50.976 

 

1.6 Conclusion:   

 

In this section we are given the comparison of numerical 

solution with analytical solution  
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Adams-Moulton method: 

 

Milne’s Method: 

 

Analytical method  

1
5.513446428

n

py



 
1 5.513446428c

ny  
 

I=5.7 

Comparison of multistep method by Analytical solution for 

Numerical problem 1 

 

Adams-Moulton method: 

 

Milne’S Method: 

 

Analytical method  

1

cy =51.177786 
1

cy =50.976 
50 

Comparison of multistep method by Analytical solution for 

Numerical problem 2 
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