

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

Coronal mass ejections and Jump in solar wind plasma temperature in association with shock related geomagnetic storms

PREETAM SINGH GOUR SHIVA SONI Jaipur National University, Jaipur, Rajasthan, India

Abstract

In this article we have considered the shock related geomagnetic storms of magnitude $\leq -90nT$, which are associated with coronal mass ejections (CMEs) and jump in solar wind plasma temperature (JSWT) events for the period 1997-2012. We have found 54 shock related geomagnetic storms of magnitude \leq -90nT. Out of these 54 geomagnetic storms, 48 geomagnetic storms are found to be associated with coronal mass ejections (CMEs). We observe the positive correlation between the magnitude of geomagnetic storms and speed of associated coronal mass ejections (CMEs) with correlation coefficient 0.26. Further we observe that all the shock related geomagnetic storms are associated with jump in solar wind plasma temperature (JSWT) events and studies these events with associated coronal mass ejections (CMEs). There is a positive correlation between peak value of jump in solar wind plasma temperature (JSWT) events and speed of coronal mass ejections (CMEs) with correlation coefficient 0.27. Again we have observed the positive correlation between the magnitudes of jump in solar wind plasma temperature (JSWT) events and speed of coronal mass ejections (CMEs), statistically calculated co-relation co-efficient is 0.26 between these two events.

INTRODUCTION

Coronal Mass Ejections (CMEs) are the drastic solar events in which huge amount of solar plasma materials are ejected into the heliosphere from the sun and are mainly responsible to generate large disturbances in solar wind plasma parameters and geomagnetic

storms in geomagnetic field. CMEs from the Sun drive solar wind (SW) disturbances in terms of magnetic field, speed and density, which in turn cause geomagnetic disturbance in Earth [14]. It has been established by now the main cause of geomagnetic storms is believed to be the large IMF structure which has an intense and long duration southward magnetic field component, Bz [3, 10]. They interact with the Earth's magnetic field and facilitate the transport of energy into the Earth's atmosphere through the reconnection process. Several investigators have studied geomagnetic storms with various solar features, solar wind parameters and inferred that CMEs which are the energetic solar features and associated with active regions are responsible for the most geoeffective solar wind disturbances and, therefore, the largest storms and are well associated with geomagnetic storms [1,9,12,13] .Enhanced solar wind speeds and southward magnetic fields associated with interplanetary shocks and ejecta are known to be important causes of storms [4,10].

In this work we have studied shock related geomagnetic storms, (magnitude \leq -90nT) and associated disturbances in solar wind plasma parameters e.g. jump in solar wind plasma temperature (JSWT) and with coronal mass ejections.

Experimental Data

In this investigation, hourly Dst indices of geomagnetic field have been used over the period 1997 through 2012 to determine onset time, maximum depression time, magnitude of geomagnetic storms. This data has been taken from the NSSDC omni web data system which has been created in late 1994 for enhanced access to the near earth solar wind, magnetic field and plasma data of omni data set, which consists of one hour resolution near earth, solar wind magnetic field and plasma data, energetic proton fluxes and geomagnetic and solar activity indices. The data of coronal mass ejections (CMEs) have been taken from SOHO – large angle spectrometric, coronagraph (SOHO / LASCO) and extreme ultraviolet imaging telescope (SOHO/EIT) data. To determine disturbances in solar wind plasma parameters, hourly data of solar wind plasma temperature has been used and these data been taken has also from omni web data (http://omniweb.gsfc.nasa.gov/form/dxi.html)).

ιe	mpera	ur	e										
	teromagnetic Morme	DAD-OPAT				Strong I mare ENTROP				Sour wild Temperature			
8	DATE	Tear	Day	Hour	Magnitude	Date	Time	Type	SPEED	Day	Bouff	Maximum jumo in temp	Magnitude
No.											Hour		of jump
1	10.01.1997	1997	10	2	-101	06.01.1997	15:10:42	Halo	136	10	0	163125	\$1995
2	10.04.1997	1997	100	19	-102	07.04.1997	14:27:64	Halo	\$78	101	10	69 605175	652940
3	13.00.1997	1990	135	5	-115	12.05.1397	0.087385	mano	404	135	15	150816	1-039301
4	03.09.1997	1997	246	15	-108	30.08.1997	1:30:35	Halo	371	246	16	250517	225477
5	30.12.1997	1990	264	2	-95	26.12.1997	2.31:54	Partial	197	364	17	127484	110072
	17.852.1368	1338	43		-114	24	na	na	NA	- 03	2	1001/2	NACLI
Y	02.00.1988	1958	122	2	-20.3	23/04.139/8	102824	man	1374	121	19	4238-44	3(294)12
8	07.11.1998	1998	311	11	-139	04.11.1998	7:54:06	Halo	523	312	1	223059	215560
2	25.02.1999	1999	59	17	-94	24	DA .	na -	na -	52	20	154621	131728
10	19.04.1989	1328	109	15	-15%	24	66	na	na	536		94816	69614
11	12.09.1999	1999	255	7	-103	10.09.1999	7:54:05	Partial	1 667	254	21	416852	349034
12	22.09.1999	1999	265	19	-191	20.09.1999	6:06:05	Halo	604	265	2	275180	250060
13	21.10.1309	1330	23/6	23	-225.7	13/10/1303	0.00700	6 august	2.03	295		023108	51815
14	22.01.2000	2000	22	14	-98	18.01.2000	17:54:05	Halo	739	22	21	165657	153520
15	15.07.2000	2000	197	15	-30.8	14.07.2000	10:54:07	Halo	1674	197	3	352419	256112
16	15.09.2000	2000	259	19	-221	12.09.2000	17:30:05	Halo	1053	259	2	117342	112359
17	13.10.2000	2000	287	14	-100	11.10.2000	6.50:05	Partial	799	256	16	118007	90415
18	28.10.2000	2000	38.62	20	-142	25.10.2009	8(2030)	man	226	392	13	15/969	1921-02
19	04.11.2000	2000	209	3	-194	01.11.2000	16:26:08	Halo	\$01	305	13	487233	665645
20	10.11.2000	2000	315	7	-102	05.11.2000	4:50:23	Halo	474	314	11	2228444	2189449
21	27.03.2001	2066	5G	19	-123	25.03.2001	17:06:05	Halo	677	85	22	167582	136338
22	31.03.2001	2000	50	3	-413	29.03.2001	10:26:05	Halo	942	50	4	704151	690882
23	15.04.2001	2000	108	1	-104	15.04.2001	1496:31	Partial	1199	107	18	29/23/42	370482
24	17.08.2001	2066	229	12	-149	15.08.2001	2354305	Halo	1575	225	12	316649	299157
25	25.10.2001	2066	298	10	-162	22.10.2001	15:06:05	Halo	1336	235	5	153554	150823
26	05.11.2001	2000	209	18	-314	04.11.2001	16:35:06	Halo	1810	305	21	137590	121248
27	24.11.2001	2000	328	6	-223	22.11.2001	23:30:05	Halo	1437	327	16	147677	20239
28	29.12.2001	2000	2863	22	-91	28.12.2001	20:30305	man	2216	39.2	2	55 1297	0.638(33)
22	23.03.2002	2002	52	14	-107	22.03.2002	11:06:05	Halo	1750	\$2	2	116154	82510
20	17.04.2002	2002	107	11	-149	15.04.2002	2.50:55	Halo	720	107	1	56069	19374
31	11/05/2002	2042	131	13	-10.3	09/05/20/2	135635	maso	614	131		23(200)	2,00/00
32	23.05.2002	2002	143	11	-172	21.05.2002	21:50:05	Partial	\$53	142	19	1217894	1201690
23	\$/1/2002	2002	213	10	-98		23:30:05	Partial	260	213	21	121706	110074
34	39109.2002	2042	273	1	-11/9	2610/2002	120244	Partial	178	2/2	15	112901	595061
35	17.08.2003	2003	229	14	-175	14.05.2003	20:06:05	Halo	378	229	13	231036	216610
36	20.11.2003	2003	324	2	-417	18.11.2003	8:50:05	Halo	1660	324	5	505060	455915
37	03.04.2004	2004	24	14	-113	24	DA .	na -	na -	94	2	119290	71517
305	22.07.2004	2004	204	18	-115	20.07.2004	13/31/32	maso	710	294	3	210.81	197731
29	30.05.2004	2004	243	5	-116	-	na	Tab.	na	243	12	\$1005	72912
40	07.11.2004	2004	212	19	-415	04.11.2004	9.5435	Halo	653	312	12	7509-66	634960
41	29.05.2905	2960	148		-100	2605.2005	15396335	maso	5399	145	3	2108/7	130////
42	12.06.2005	2005	163	16	-110	-	na	Tab.	na	163	9	265471	218359
43	10.07.2005	2065	191	11	-100	09.07.2005	22:30:05	Halo	1540	191	0	297854	271207
	241002005	2960	2,09		-248	2210.2005	1738305	naso	2,518	235	19	2348(0)7	2643465
45	14.04.2004	2006	104	0	-111	10.04.2004	6:06:04	Partial	183	103	17	362684	350243
011	14.12.2006	2006	2.65	14	-100	13.12.2006	2.54394	mano	1774	349		213450	191/41
47	05.08.2011	2011	217	19	-162	04.08.2011	4.22.95	Halo	1315	217	5	1624.367	993166
45	09.09.2011	2011	252	13	-109	07.09.2011	18:48:05	Partial	924	252	6	362200	349740
8	17.0552011	2011	2300		-94	15.09.2011	0.00.00	Partial	5.00	260	2	114129	19/20/11
50	26.09.2011	2011	202	13	-136	24.09.2011	12:48:07	Halo	1915	268	14	56/2016	474109
51	24.10.2011	2011	297	21	-157	2210.2011	10:24:05	Halo	1005	296	21	343146	330159
042	97.03.2912	20912	107	0	-109	95332912	4100205	mano	1001	95	12	28-8927	3337/80
53	23.04.2012	2072	114	15	-119	19.04.2012	15:12:09	Partial	5-60	115	3	327270	3070.94
54	17.06.2012	2012	169	0	-151	14.06.2012	1412:07	Halo	\$87	168	6	1925.76	156565

Table-1 Data of CMEs, geomagnetic storms and solar wind plasma temperature

Analysis and Results

In this study we use statistical method association and correlation for data analysis of the observed, CMEs, geomagnetic storms and jump in solar wind plasma temperature (JSWT) events. The data of observed coronal mass ejections (CMEs), geomagnetic storms and solar wind plasma temperature are given in Table-1.

From data analysis it was observed that the number of geomagnetic storms during 1997 to 2012 is 54. Out of these 48 (88.09%) geomagnetic storms were found to be associated with CMEs. The majority of shock related geomagnetic storms are related to halo CMEs and the association rate is 75% (36) and the association rate with partial halo CMEs is 25% (12). Distribution of shock related geomagnetic storms with CMEs is shown in figure-1.

To know the statistical behavior of shock related geomagnetic storms and CMEs we have plotted a scatter plot between magnitude of geomagnetic storms and speed of CMEs and the resulting plot is shown in figure-2. The trend line of the plot shows weak positive correlation between magnitude of geomagnetic storms and speed of associated CMEs with co-relation coefficient 0.26.

Figure- 1-Distribution of shock related geomagnetic storms with coronal mass ejections

Figure -2 -The figure shows scatter plot between speed of CMEs and magnitude of shock related geomagnetic storms.

By the analysis we have selected those jumps in solar wind plasma temperature (JSWT) events which are associated with shock related geomagnetic storms and studied statistical behavior of these events with coronal mass ejections.

To see how the peak value of JSWT events are correlated with coronal mass ejections. We have plotted a scatter diagram between the speed of CMEs and peak value of associated JSWT events figure-3. From the fig it is clear that, most of the JSWT events having higher peak value are associated with such CMEs which have higher speed but these two events do not have any fixed proportion, We have found some JSWT events which have higher peak value but they are associated with such CMEs events which have relatively slow speed and vice versa. The trend line of the scatter plot positive co-relation has been found between speed of CMEs and peak temperature of jump in temperature. Statistically calculated co-relation co-efficient is 0.27 between these two events.

Figure-3 -The figure shows scatter plot between speed of CMEs and peak value of JSWT events associated with shock related GMS.

Furthermore we have found that the magnitudes of JSWT events are correlated with speed of CMEs, we have plotted a scatter diagram between magnitude of JSWT events and speed of associated CMES shown in figure-4. From the fig It is clear that, most of the JSWT events which have large magnitude are associated with such CMEs which have relatively higher speed but the magnitude of these two events do not have any fixed proportion, we have found some JSWT events which have large magnitude but they are associated with such CMEs which have slow speed and some JSWT events which have small amplitude but they are associated with CMEs having higher speed. The trend line of the scatter plot between these two parameters shows positive correlation with correlation co-efficient 0.26.

Figure-4 -The figure shows scatter plot between magnitude of JSWT associated with shock related GMS and speed of CMEs.

CONCLUSION

In this investigation we have studied shock related geomagnetic storms with coronal mass ejections (CMEs) and solar wins plasma parameters specifically with plasma temperature for the period 1997-2011 of magnitude \leq -90nT. We have observed that the geomagnetic storms which are related to shocks are 54 and out of these 48 are fund

to be associated with coronal mass ejections (CMEs). These CMEs are associated with halo and partial halo coronal mass ejections and the association rate is 75% and 25% respectively. We have concluded that most of them are associated with halo CMEs. Again we observe that all the geomagnetic storms are associated with solar wind plasma temperature events and there is a positive correlation between plasma temperature events and coronal mass ejections. By the analysis of these results we have concluded that all the geomagnetic storms are related to coronal mass ejections and plasma parameters as well.

REFERENCES

[1] Cane, H. V., Richardson, I. G., & St. Cyr, O. C., Geophys. Res. Lett., 27, 3591, 2000.

[2] Correiaa, E. R.V. de Souzaa Journal of Atmospheric and Solar-Terrestrial Physics 67, 1705, 2005 [3] Echer, E M V Alves and W D Gonzalez, Solar Phys. 221, 361,2004.

[3] Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, J. J. Geophys. Res., 96, 7831, 1991.

[4] St. Cyr, O.C. et al. J. Geophys. Res. 105, 18,169–18, 185, 2000.

[5] Tsurutani, B T Gonzalez, W D F Tang, S I Akasofu and E J Smith, J. Geophys. Res. 93, 8519, 1988.

[6] Verma P.L. Tripathi A.K. & Sharma ,Sushil J. Plasma Fusion Res. SERIES, Vol. 8 Page 221-225, 2009.

[7] Webb, D. F., Cliver, E. W., Crooker, N. U., St. Cyr, O. C., & Thompson, B. J., J. Geophys. Res., 105, 7491, 2000.

[8] Zhao, X. P., & Webb, D. F., J. Geophys. Res., 108, 1234, DOI: 10.1029/2002JA009606, 2003.

[9] Zhang .G.Dere.K.P.Astrophysical Journal, Vol 582, 520, 2003.