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Abstract:  

New optimal strong-stability-preserving (SSP) Hermite–Birkhoff (HB) 

methods, 
  HB(k,s,p) of order   p = 5,6,...,12 with nonnegative 

coefficients, are constructed by combining  k -step methods of order 

  (p - 4) and  s -stage explicit Runge–Kutta methods of order 5 (RK5), 

where   s = 4,5,...,10. These new methods preserve the monotonicity 

property of the solution, so they are suitable for solving ordinary 

differential equations (ODEs) coming from spatial discretization of 

hyperbolic partial differential equations (PDEs). The canonical Shu–
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Osher form of the vector formulation of SSP RK methods is extended to 

SSP HB methods. The 
  HB(k,s,p) methods with largest effective SSP 

coefficient, 
  
c

eff
, have been numerically found among the HB methods 

of order 
 p

 on hand. These effective SSP coefficients are really good 

when compared to other well-known SSP methods such as Huang's 

hybrid methods (HM) and 2-step  s -stage Runge–Kutta methods 

(TSRK). Their main features are summarized. 

 

Key words: Strong-stability-preserving, Hermite–Birkhoff method, 

SSP coefficient, Time discretization, Method of lines, Comparison with 

other SSP methods.  

 

 

1. INTRODUCTION 

In this paper, we shall concerned with the numerical solution of 

systems of  N  ordinary differential equations with initial 

conditions of the form: 

  

dy

dt
= f (t,y(t)), y(t

0
) = y

0
, (1) 

where   y Î» N  is the semi–discrete state and    f : » ´ » N ® » N  

represents the discretization of the spatial variables forming a 

system of semi-discrete equations such that  

  
y(t + Dt) £ y(t) , (2) 

where 
 
.  is a norm, a semi-norm, or more generally, any convex 

functional. 

 It is also assumed that  f  satisfies a discrete analog of 

inequality (2), 

  
y

n
+ Dtf (t

n
,y

n
) £ y

n
, (3) 

for a sufficiently small time step 
  
0 < Dt £ Dt

FE
 and all 

 
y

n
 where 

  
Dt

FE
 is a maximal step size for which (3) holds. Here 

 
y

n
 is a 

numerical approximation of 
  
y(t

0
+ nDt). We are now interested 

in higher-order, explicit, multistep Hermite–Birkhoff methods 
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that preserve the strong stability property [3], also called 

monotonicity property [8], 

  
y

n
£ max

1£ j£k
y

n- j
, (4) 

for 
  
0 £ Dt £ Dt

max
= cDt

FE
whenever the forward Euler (FE) 

condition (3) holds. The positive integer  k  represents the 

number of previous steps used to compute the numerical 

solution at the next step. The number  c  is called the strong-

stability-preserving coefficient, which depends on the numerical 

integration method. Respectable efforts have been devoted to 

find numerical methods with highest  c .   

 A multistage method is said to be SSP method if it 

satisfies SSP property. These methods have been developed to 

satisfy the SSP property (4) for system (1) whenever the FE 

condition (3) is fulfilled. The SSP property (4) is desirable in 

that it mimics property (2) of the true solution and prevents 

error growth and it is guaranteed under the maximum time 

step 
  
Dt

max
= cDt

FE
. 

 Such SSP results are mainly applied for time 

integration of nonlinear hyperbolic PDEs, in particular, of 

conservation laws, an instance of which is the one-dimensional 

equation  

  
y

t
+ g(y)

x
= 0, y(x,0) = y

0
(x) , (5) 

where the spatial derivative 
  
g(y)

x
is approximated by a 

conservative finite difference or finite element at 
  
x

j
, j =1,2,...,N

(see, for example, [6,14,18,1]). This spatial semi–discretization 

will lead to system (1) of ODEs. 

 In our research, to solve system (1), we construct new 

explicit, SSP,  k -step,  s -stage, Hermite–Birkhoff methods of 

order
 p

,
  HB(k,s,p) with nonnegative coefficients as 

combinations of linear  k -step methods of order   p - 4 and  s -

stage RK methods of order 5.   
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 These new methods involve HB interpolation 

polynomials. Furthermore, these methods are all SSP because 

they can be decomposed in terms of SSP FE methods by 

convexity and by using extension of the Shu–Osher 

representation RK methods to our methods. Therefore, the 

obtained high–order SSP HB time discretizations will maintain 

the SSP property (4), perhaps with an SSP coefficient, 

  c(HB(k,s,p)):  

  
Dt £ c(HB(k,s,p))Dt

FE
. (6) 

 

The new 
  HB(k,s,p) have larger effective SSP coefficients than 

Huang's [7] SSP hybrid methods (
  HM(k,p)) with the same  k  

and 
 p

, especially when k is small. These new methods have far 

larger effective SSP coefficients than SSP TSRK methods when 

  k ³ 3. In particular, no counterparts of 
  HB(k,s,p) for 

  p = 9,10,11,12 have been found  in the literature among hybrid 

and general linear multistep methods. 

 Section 2 introduces the notation and general formulae 

of  k -step,  s -stage 
  HB(k,s,p) methods of order 

 p
. Order 

conditions are listed in Section 3. Section 4 presents the 

canonical Shu-Osher form of 
  HB(k,s,p)by means of the vector 

notation  and formulates the optimization problem. Comparing 

effective SSP coefficients of 
  HB(k,s,p) methods to 

  HM(k,p) and 

  TSRK(s,p) methods is displayed in Section 5. 

 

2.  k - STEP,  s -STAGE 
  HB(k,s,p) OF ORDER 

 
p  

 

Throughout this paper, the following notation will be used: 

Notation 1. 

   k, s, p denote the number of steps, the number of stages 

and the order of a given method. 
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  HB(k,s,p):  k -step,  s -stage Hermite-Birkhoff method of 

order 
 p

. 

 
  HM(k,p):  k -step hybrid method of order 

 p
. 

 
  RK(s,p) :  s -stage Runge-Kutta method of order 

 p
. 

 
  TSRK(s,p): 2-step,  s -stage Runge-Kutta method of 

order 
 p

.  

All methods considered in this paper are SSP unless specified 

otherwise, so the denomination ―SSP‖ will often be omitted in 

what follows. 

 

Notation 2. 

 The abscissa vector 
  
s = [c

1
,c

2
,...,c

s
]T , 0 £ c

j
£1 defines the 

off-step points 
  
t
n

+ c
j
Dt, j =1,2,...,s. In all cases, 

  
c
1

= 0 and 

  
c
1

0 =1  by convention. 

 At each off-step point, let 
  
F

j
:= f (t

n
+ c

j
Dt,Y

j
) be the jth-

stage derivative where 
 
Y

j
  is the jth -stage value and set 

  
Y

1
= y

n
.  

 To perform integration from 
 
t
n

 to 
  
t
n+1

 , an  s -stage 

Hermite–Birkhoff method is defined by the following  s  

formulae: 

  (s -1)HB polynomials of degree 
  (2k + i - 3) are used as 

predictors to obtain the stage values 
 
Y

i

  

Y
i
= v

B,i
y

n
+ A

B,ij
j=1

k-1

å y
n- j

+ Dt[ a
ij

j=1

i-1

å F
j
+ B

B,ij
j=1

k-1

å f
n- j

], i = 2,3,¼,s, (7) 

and an HB polynomial of degree 
  (2k + s - 2)  is used as an 

integration formula to obtain 
  
y

n+1
  to order 

 p
, 
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y
n+1

= v
B,s+1

y
n

+ A
B,s+1,j

j=1

k-1

å y
n- j

+ Dt[ b
j

j=1

s

å F
j
+ B

B,s+1,j
j=1

k-1

å f
n- j

].  (8) 

 

Here 
  
v

B,i
,A

B,ij
,B

B,ij
,a

ij
 and 

 
b

j
 for   i = 2,3,...,s+1 and 

  j =1,2,...,k -1 are the constant coefficients that we can 

construct to obtain a good approximation,
  
y

n+1
, to the solution 

  
y(t

n+1
) = y(t

n
+ Dt). 

 The subscript B refers to the Butcher form, as opposed 

to the subscript SO and (SO,r), used later for Shu–Osher form 

and canonical Shu–Osher form, respectively.      

 

3. ORDER CONDITIONS FOR 
  HB(k,s,p) 

For the construction of the order conditions of  s -stage 

  HB(k,s,p), we have the conditions coming from the backsteps of 

the methods: 

   

B
i
( j) = A

B,iℓ
ℓ=1

k-1

å
(-ℓ) j

j!
+ B

B,iℓ
ℓ=1

k-1

å
(-ℓ) j-1

( j -1)!
,      

  

i = 2,3,...,s,

j =1,2,..., p.

ì
í
îï

 (9) 

 

Matching expansion of the numerical solution from formulae 

(7)–(8) with Taylor expansion of the true solution, we obtain 

multistep and RK–type order conditions that must be satisfied 

by 
  HB(k,s,p) methods. 

 First we have the consistency conditions of 
  HB(k,s,p) 

methods: 

 

  

v
B,i

+ A
B,ij

j=1

k-1

å =1, i = 2,3,¼,s +1 . (10) 
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Next we impose the following 
  (p - 4)simplifying assumptions 

on the abscissa vector 
  
s = [c

1
,c

2
,...,c

s
]T (see [10]):

  

a
ij

j=1

i-1

å c
j

m + m!B
i
(m +1) =

1

m +1
c

i

m+1,
i = 2,3,¼,s,

m = 0,1,¼,p - 4.

ì
í
ï

îï

 (11) 

 Conditions (11) will help reduce the large number of 

RK–type order conditions to 12 conditions for the case   p > 5 : 

  

b
i

i=1

s

å c
i

m + m!B(m +1) =
1

m +1
, m = 0,1,¼,p -1, (12) 

  

b
i

i=2

s

å [ a
ij

j=1

i-1

å
c

j

p-4

(p - 4)!
+ B

i
( p - 3)]+ B(p - 2) =

1

(p - 2)!
, (13) 

  

b
i

i=2

s

å
c

i

p - 2
[ a

ij
j=1

i-1

å
c

j

p-4

(p - 4)!
+ B

i
(p - 3)]+ B(p -1) =

1

(p -1)!
, (14) 

  

b
i

i=2

s

å [ a
ij

j=1

i-1

å
c

j

p-3

( p - 3)!
+ B

i
(p - 2)]+ B(p -1) =

1

(p -1)!
, (15) 

  

b
i

i=2

s

å [ a
ij

j=1

i-1

å [ a
jk

k=1

j-1

å
c

k

p-4

(p - 4)!
+ B

j
(p - 3)]+ B

i
(p - 2)]+ B(p -1) =

1

(p -1)!
, (16) 

  

b
i

i=2

s

å
c

i

2

(p - 2)(p -1)
[ a

ij
j=1

i-1

å
c

j

p-4

(p - 4)!
+ B

i
(p - 3)]+ B(p) =

1

p!
, (17) 

  

b
i

i=2

s

å
c

i

p -1
[ a

ij
j=1

i-1

å
c

j

p-3

(p - 3)!
+ B

i
(p - 2)]+ B( p) =

1

p!
, (18) 

  

b
i

i=2

s

å
c

i

p -1
[ a

ij
j=1

i-1

å [ a
jk

k=1

j-1

å
c

k

p-4

(p - 4)!
+ B

j
(p - 3)]+ B

i
(p - 2)]+ B(p) =

1

p!
, (19) 

  

b
i

i=2

s

å [ a
ij

j=1

i-1

å
c

j

p-2

(p - 2)!
+ B

i
(p -1)]+ B(p) =

1

p!
, (20) 

  

b
i

i=2

s

å [ a
ij

j=1

i-1

å
c

j

p - 2
[ a

jk
k=1

j-1

å
c

k

p-4

(p - 4)!
+ B

j
(p - 3)]+ B

i
(p -1)]+ B(p) =

1

p!
,(21) 
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b
i

i=2

s

å [ a
ij

j=1

i-1

å [ a
jk

k=1

j-1

å
c

k

p-3

(p - 3)!
+ B

j
(p - 2)]+ B

i
(p -1)]+ B(p) =

1

p!
, (22) 

   

b
i

i=2

s

å { a
ij

j=1

i-1

å [ a
jk

k=1

j-1

å ( a
kℓ

ℓ=1

k-1

å
c
ℓ

p-4

(p - 4)!
+ B

k
(p - 3))+ B

j
(p - 2)]+ B

i
(p -1)}+ B(p) =

1

p!
,
 (23)  

where the backstep parts, 
  B( j), are defined 

  

B( j) = A
B,s+1,i

i=1

k-1

å
(-i) j

j!
+ B

B,s+1,i
i=1

k-1

å
(-i) j-1

( j -1)!
, j =1,¼,p +1.  (24) 

In the case   p = 5 , 
  HB(k,s,5)has to satisfy the following 

additional condition: 

 

  

b
i

6
i=2

s

å [ a
ij

j=1

i-1

å c
j
+ B

i
(2)]2 + B(5) =

1

5!
.  (25) 

4. CANONICAL SHU – OSHER FORM AND 

OPTIMIZATION  PROBLEM 

 

As done in [13], (7)–(8) can be rewritten in modified Butcher 

form and Shu– Osher representation. Furthermore, Gottlieb, 

Ketcheson and Shu presented a more compact notation and the 

canonical Shu–Osher form for Runge–Kutta methods [5]. 

Following these results, we extended the canonical Shu–Osher 

form for our 
  HB(k,s,p) methods. 

The modified Shu–Osher form generalized from the 

Shu–Osher form of RK can be used to represent explicit HB 

methods (see more in [12]): 

  

Y
i
= v

i
y

n
+ Dtw

i
f
n( ) + [

j=1

k-1

å A
ij
y

n- j
+ DtB

ij
f
n- j

]+ [
j=2

i-1

å a
ij
Y

j
+ Dtb

ij
F

j
], i = 2,3,¼,s +1,

y
n+1

= Y
s+1

.

 (26) 

and the consistency condition now becomes 

 

  

v
i
+ A

ij
j=1

k-1

å + a
ij

j=2

i-1

å =1, i = 2,3,¼,s +1.  (27) 

We can rearrange (28) as follows 
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Y
i

= v
i

y
n

+ Dt
w

i

v
i

f
n

æ

è
ç

ö

ø
÷

é

ë

ê
ê

ù

û

ú
ú

+ A
ij

j=0

k-1

å y
n- j

+ Dt
B

ij

A
ij

f
n- j

æ

è
ç
ç

ö

ø
÷
÷

é

ë

ê
ê

ù

û

ú
ú

+ a
ij

j=2

i-1

å Y
j
+ Dt

b
ij

a
ij

F
j

æ

è
ç
ç

ö

ø
÷
÷

é

ë

ê
ê

ù

û

ú
ú
, i = 2,3,¼,s +1.

 (28) 

Clearly, (28) is the convex combination of forward Euler 

condition (3), with the step sizes 

  

w
i

v
i

Dt, 
B

ij

A
ij

Dt and 

 

b
ij

a
ij

Dt 

whenever 
  
v

i
,w

i
,A

ij
,B

ij
,a

ij
,b

ij
³ 0 .  

4.1 Vector notation 

 Now we define the vectors and matrices as follows [12]: 

     v,w Î» s+1 have the form

   
v = [0,v

2
,v

3
,¼,v

s+1
]T ,w = [0,w

2
,w

3
,¼,w

s+1
]T . 

 Two strictly lower triangular matrices 

   
a = (a

ij
), b = (b

ij
) Î» (s+1)´(s+1) . 

 Two 
  (s +1)´ (k -1) rectangular matrices 

   
A

SO
= (A

ij
) and 

   
B

SO
= (B

ij
) with zero first row. 

 The matrices,     Y,F Î» (s+1)´N , 
    
y

back
Î» (k-1)´N  and 

    
f

back
Î» (k-1)´N have the form:

   
Y = [0,Y

2
,¼,Y

s+1
]T ,

   
F = [0,F

2
,¼,F

s+1
]T ,

   
y

back
= [y

n-1
,y

n-2
,¼,y

n-(k-1)
]T , 

   
f

back
= [f

n-1
,f

n-2
,¼,f

n-(k-1)
]T , with the following N -vectors: 

  
Y

j
, F

j
 for   j =1,2,...,s +1 , 

  
y

j
, f

j
 for 

  j = n - (k -1),...,n , 

  
Y

1
= y

n
, F

1
= f

n
, Y

s+1
= y

n+1
and 

  
F

s+1
= f

n+1
. 

Then, the modified Shu–Osher form of HB formulae can be 

rewritten compactly in vector notation: 

   

Y = vy
n

T + aY + A
SO

y
back

+ Dt wf
n

T + bF + B
SO

f
back( ),

y
n+1

= Y
s+1

.
(29) 

and the consistency condition (27) becomes 
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v +ae

s+1
+ A

SO
e

back
= e

s+1
, (30) 

where 
    
e

s+1
= [0,1,1,¼,1]T Î» (s+1)and 

    
e

back
= [1,1,¼,1]T Î» (k-1), 

respectively. 

 Also, the modified Butcher form of 
  HB(k,s,p) is: 

 

   

Y = v
B
y

n

T + A
B
y

back
+ Dt w

B
f
n

T + b
B
F + B

B
f

back( ),
y

n+1
= Y

s+1
,

 (31) 

here the relations between Shu–Osher coefficients and Butcher 

coefficients are: 

  
v

B
= I -a( )

-1

v,
  
w

B
= I -a( )

-1

w, 
  
A

B
= I -a( )

-1

A
SO

,

  
b

B
= I -a( )

-1

b, B
B

= I -a( )
-1

B
SO

,  

and the consistency condition: 
   
v

B
+ A

B
e

back
= e

s+1
.  

4.2. Canonical Shu – Osher form in vector notation 

 It is useful to find the SSP coefficient of an HB method 

under a particular Shu–Osher form of the matrices a and b by 

assuming the ratio 

 

r =
a

ij

b
ij

 for every   i, j, i = 2,3,...,s +1  and 

  j =1,2,...,i -1 such that
  
b

ij
¹ 0 . In vector notation, we can 

rewrite: 
  
a

r
= rb

r
. 

 Then the canonical Shu – Osher form of 
  HB(k,s,p) is 

defined as follows: 

 

   
Y = v

r
y

n

T + Dtw
r
f
n

T( ) + a
r
Y + Dtb

r
F( ) + A

SO,r
y

back
+ DtB

SO,r
f

back( ), (32) 

where all the coefficients are determined by relations: 

   
v

r
= I -a

r( )vB
= I + rb

B( )
-1

v
B
, (33) 

   
w

r
= I -a

r( )wB
= I + rb

B( )
-1

w
B
, (34) 
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b

r
= b

B
I -a

r( ) = I + rb
B( )

-1

b
B
, (35) 

   
a

r
= rb

B
I -a

r( ) = r I + rb
B( )

-1

b
B
, (36) 

   
A

SO,r
= I -a

r( )A
B

= I + rb
B( )

-1

A
B
, (37) 

   
B

SO,r
= I -a

r( )BB
= I + rb

B( )
-1

B
B
, (38) 

with the consistency condition: 
   
v

r
+a

r
e

s+1
+ A

SO,r
e

back
= e

s+1
. (39) 

The ratio 

 

r =
a

ij

b
ij

 for   i = 3,4,...,s +1 and   j = 2,3,...,i -1, becomes a 

feasible SSP coefficient of 
  HB(k,s,p). Hence, this ratio  r  must 

satisfy two additional sets of conditions: 

  

r £
v

i

w
i

, i = 2,3,¼,s +1, 

and    

  

r £
A

ij

B
ij

,
j =1,2,¼,k -1,

i = 2,3,¼,s +1.

ì
í
ï

îï

      

Therefore, we have an extended result, which is slightly 

modification of the result presented in [11,12]. 

 

Theorem 1. ([10,11,12]) If  f  satisfies the forward Euler 

condition (3), then  k  -step,  s -stage 
  HB(k,s,p) (32) satisfies the 

strong–stability–preserving property 

 
  
y

n
£ max

1£ j£k
y

n- j
 

provided 
   
Dt £ c(v

r
,w

r
,a

r
,b

r
,A

SO,r
,B

SO,r
)Dt

FE
,  

where 
   
c(v

r
,w

r
,a

r
,b

r
,A

SO,r
,B

SO,r
) is equal to 

  

  

r =
a

ij

b
ij

ì

í
ï

îï

ü

ý
ï

þï
,

i = 3,4,¼,s +1,

j = 2,3,¼,i -1,

ì
í
ï

îï

  (40) 
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and less than or equal to 

  

min
i=2,3,¼,s+1

v
i

w
i

, (41) 

  

min
j=1,2,¼,k-1

A
ij

B
ij

ì

í
ï

îï

ü

ý
ï

þï
, i = 2,3,¼,s +1, (42) 

with the convention that   a / 0 = +¥ , under the assumption that 

all coefficients of (32) are nonnegative. 

4.3. Optimization problem to obtain 
  c(HB(k,s,p))    

To obtain optimal 
  HB(k,s,p) and highest 

  c(HB(k,s,p)) 

canonical form, by above theorem, we maximize 

 

   

max =
v

r
,w

r
,a

r
,b

r
,A

SO,r
,B

SO,r

c(v
r
,w

r
,a

r
,b

r
,A

SO,r
,B

SO,r
) = c(HB(k,s,p)).   

In the optimization formulation with any feasible initial data, 

the ratio  r  becomes the variable  r   which satisfies the equation 

in three variables 
  
a

ij
, r, b

ij
, 

  
a

ij
- rb

ij
= 0, i = 3,4,...,s +1, j = 2,3,...,i -1, 

together with the two conditions (41) and (42). 

So the problem of optimizing the canonical   
HB(k,s, p)  can be 

formulated as 

   

c(HB(k,s,p)) = max =
v

B
,w

B
,b

B
,A

B
,B

B

r, (43) 

subject to the component – wise inequalities 

  
   
I + rb

B( )
-1

v
B

³ 0, (44) 

  
   
I + rb

B( )
-1

w
B

³ 0, (45) 

  
   
b

B
I + rb

B( )
-1

³ 0, (46) 

  
   
I + rb

B( )
-1

A
B

³ 0, (47) 
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I + rb

B( )
-1

B
B

³ 0, (48)  

  
   
I + rb

B( )
-1

-v
B

+ rw
B( ) £ 0, (49) 

  
   
I + rb

B( )
-1

-A
B

+ rB
B( ) £ 0, (50)   

 

 
   
rb

B
I + rb

B( )
-1

e
s+1

+ I + rb
B( )

-1

A
B
e

back
£ e

s+1
, (51)  

together with the set of order conditions (12)–(25). 

 

5. COMPARING EFFECTIVE SSP COEFFICIENTS OF 

THE METHODS ON HAND 

  

Since   HB(k,s,p) methods contain many free parameters when  k 

is sufficiently large, the optimization formulation, implemented 

by fmincon in the MATLAB Optimization Toolbox, was used to 

search for the methods with largest   c(HB(k,s,p)) for different 

values of  k. In this work, the MATLAB Optimization Toolbox 

was used to tolerance  10-12 on the objective function 

  c(HB(k,s,p)) provided all the constraints were satisfied to 

tolerance  10-14.  

Gottlieb [2] showed that computational cost and orders 

also take into account when searching for high-order SSP 

methods with  c  as large as possible. Therefore, the effective 

coefficients 
  
c

eff
 provide a fair comparison between methods of 

the same order. 

 

Definition 1. [15] The effective SSP coefficient of an SSP 

method M is denoted by 

  
   
c

eff
(M ) =

c(M )

ℓ
, (52) 
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where  ℓ  is the number of function evaluations of  M   per time 

step and 
  c(M ) is the SSP coefficient of M  . 

 For instance,   ℓ= s  for 
  HB(k,s,p) or 

  RK(s,p)  methods 

and   ℓ= 2 for 
  HM(k,p). By definition, 

  
c

eff
(FE) =1. 

 

Definition 2. [17] The percentage efficiency gain (PEG) of the 

effective SSP coefficients 
  
c

eff
(M2) of method 2 over 

  
c

eff
(M1) of 

method 1 is evaluated by 

 

  

PEG(c
eff

(M2),c
eff

(M1))=
c

eff
(M2)- c

eff
(M1)

c
eff

(M1)
. (53) 

In Tables 1–8, for each stage value  s , the row–wise maxima, 

  
max

k
c

eff
(HB(k,s,p)) are listed with an asterisk. The largest 

  
c

eff
 

for each order 
 
p  is in boldface. This data is summarized in 

Table 9 and Fig.2. 

It is noted that, in Table 1–8, for a given  k , 

  
c

eff
(HB(k,s,p)) first increases with  s  and then decreases. On 

the other hand, for a given  s , 
  
c

eff
(HB(k,s,p)), first increases 

with  k  and then stabilizes. Therefore, empty entries in the 

tables correspond either to existing methods with a smaller 
  
c

eff
. 

 

5.1 Fifth – order method 

Ruuth and Spiteri [16] showed that there are no fifth – order 

SSP RK methods with nonnegative coefficients. However, in 

[15], they found fifth – order 
  RK(s,5), s = 7,8,9,10 methods with 

negative coefficients. Among them,
 RK(10,5)is the best method 

with 
  
c

eff
(RK(10,5)) = 0.339.  

 In our work, optimal canonical 
  HB(k,s,5)  with stage 

number   s = 4,5,...,10 are found and their 
  
c

eff
 are listed in Table 
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1 with the largest 
  
c

eff
(HB(2,8,5)) = 0.447. Comparing with 

 RK(10,5), our method is much better with 

  
PEG(c

eff
(HB(2,8,5),c

eff
(RK(10,5)))=32% (by (53)) and it has the 

same 
  
c

eff
with 

 TSRK(8,5).   

 The best HM method is 
 HM(7,5) with 

  
c

eff
(HM(7,5))=0.373. Even with the lowest step number   k = 3, 

our method is better than the best HM method, that is 

  
c

eff
(HB(3,4,5))=0.341 > c

eff
(HM(7,5))=0.373 (by (53)).  

 Except for 
  
c

eff
(HB(2,4,5)), our methods are better than 

or equal to 
  
c

eff
(TSRK(s,5)) of the same order. 

 
 

5.2 Sixth – order method 

Table 2 shows 
  
c

eff
of HB as well as 

  
c

eff
 of HM [7] and TSRK [4] 

methods of order 6. 

 We see that two-step  s -stage 
  HB(2,s,6) have 

  
c

eff
similar 

to 
  
c

eff
of 

  TSRK(2,s,6). But if we further increase the step 

number  k , we can find 
  HB(k,s,6) with considerably larger SSP 

coefficients. 

 Besides, it is not mentioned in [9] that 4-stage and 5-

stage TSRK methods of order 6 exist.  We found 3-step, 4-stage 

HB(3,4,6) with good 
  
c

eff
(HB(3,4,6))=0.179. 
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Comparing with hybrid methods, we remark that 
  HB(k,4,6) 

with   k > 4 are competitive with Huang’s best 7-step HM(7,6) of 

order 6. For instance, 

  
c

eff
(HB(4,4,6))=0.272 > c

eff
(HM(7,6))=0.220. Substantially, for 

the same step number   k = 5, 
 HB(5,7,6)  has really better 

  
c

eff
 

than 
 HM(5,6) with 

  
PEG(c

eff
(HB(5,7,6),c

eff
(HM(5,6)))=238% (by 

(53)). 

 Table 2 also gives a new phenomenon, that is 
  
c

eff
 

increases again when   s > 8  after it has decreased for   k = 3,4,5,6 

 

5.3 Seventh – order methods 

Table 3 lists 
  
c

eff
 of HB methods of order 7 together with 

 HM(7,7) and TSRK of the same order. 

 

 

The SSP coefficients of 
  HB(2,s,7) are slightly lower than those 

of 
  TSRK(s,7) as seen in the second and eighth columns. 



Huong Nguyen-Thu, Truong Nguyen-Ba- Strong-stability-preserving Hermite – 

Birkhoff time discretization methods combining k-step methods and explicit 

s-stage Runge–Kutta methods of order 5 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 3 / June 2016 

2598 

Nevertheless, increasing the step number to   k = 3,4,...,7 , we 

found 
  HB(k,s,7),   s = 4,5,...,10, with larger effective SSP 

coefficients. For example, the best optimal method of order 7 is 

the 6-step, 6-stage 
 HB(6,6,7) with 

  
c

eff
(HB(6,6,7)) = 0.305 . 

Ketcheson, Gotlieb and Macdonald [4] found a two-step, 8-stage 

RK method of order 7 with 
  
c

eff
(TSRK(8,7))=0.071with the best 

  
c

eff
(TSRK(12,7))=0.231 . However, they did not mention that 

with lower stage number   s < 8 , two-step,  s -stage TSRK 

methods of order 7 exist. Our investigation for HB methods 

shows that HB methods of order 7 with only 4 stages exist. 

Despite their low stage number, HB methods of order 7 are 

competitive with the best two-step RK of order 7. For example, 

 HB(7,4,7)  has 
  
c

eff
(HB(7,4,7)) = 0.287 , larger than 

  
c

eff
(TSRK(12,7))=0.231of the best 12-stage method TSRK(12,7). 

 Compared with hybrid methods, despite the lower step 

number,   k = 4 our optimal 
  HB(4,s,7)  are competitive with the 

7-step 
 HM(7,7), the best hybrid method at present. 

Additionally, the PEG between our best method with HM(7,8) is 

nonnegligible with 
  
PEG(c

eff
(HB(6,6,7),c

eff
(HM(7,7)))=161% (by 

(53)). 

 Except for HB(2,8,7) and HB(2,9,7), all our HB methods 

have better 
  
c

eff
 than HM(7,7). 

5.3 Eighth-order methods 

The
  
c

eff
of optimal 

  HB(k,s,8) with stage number   s = 4,5,...,10 

and  3,4,...8 are presented in Table 4 with largest 

  
c

eff
(HB(8,6,8)) = 0.261. Ketcheson, Gottlieb, Macdonald and Shu 

found 
  
c

eff
of 11- and 12-stage TSRK ([9,4]) of order 8. The best of 

these has 
  
c

eff
(TSRK(12,8)) = 0.078. It is not mentioned in 
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Ketcheson, Gottlieb and Macdonald [9] that two-step, 4- to 10-

stage RK methods of order 8 exist. Our study of HB methods 

shows that these new methods of order 8 with only 4 stages 

exist. We found 
  HB(8,s,8) with good 

  
c

eff
(HB(8,s,8)) ³ 0.237 with 

stage number   s = 4,5,...,10.  

Though general linear multistep, multistage SSP 

methods of order 9 to 12 with nonnegative coefficients have not 

been found in the literature, we discovered 
  HB(k,s,p) of these 

high orders with good effective SSP coefficients described in the 

following subsection. 

 

  s \ k  3 4 5 6 7 8 

4 

5 

6 

7 

8 

9 

10 

 

 

 

 

0.160 

0.174 

0.186 

 

0.121 

0.169 

0.169 

0.198 

0.202 

0.217 

0.123 

0.200 

0.239 

0.236 

0.235 

0.224 

0.231 

0.180 

0.230 

0.256 

0.240 

0.241 

0.236 

0.234 

0.213 

0.253 

0.258 

0.243 

0.243 

0.239 

*0.237 

*0.239 

*0.259 

0.261 

*0.244 

*0.244 

*0.240 

0.237 

Table 4: 
  
c

eff
(HB(k,s,8))  as function of  k  and  s  

 

5.4 High order methods 

We numerically found optimal 
  HB(k,s,9) with stage number 

  s = 4,5,...,10. Their 
  
c

eff
 are listed in Table 5 with the largest 

  
c

eff
(HB(8,6,9))=0.228. 

 In addition to the above results, the optimal 
  HB(k,s,10) 

with stage number  s = 4,5,...10 are found numerically and Table 

6 lists all the 
  
c

eff
of our optimal methods with the largest 

  
c

eff
(HB(8,8,10))=0.186. 

 The optimal 
  HB(k,s,11)as well as 

  HB(k,s,12)with stage 

number   s = 4,5,...10 and their 
  
c

eff
 are listed in Table 7 and 8, 

respectively.  
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We see in Tables 7 and 8 that 
  
c

eff
(HB(8,8,11))=0.156and 

  
c

eff
(HB(8,8,12))=0.116are largest for the values of  k  and  s  on 

hand, corresponding to order 11 and 12. 

 

  s \ k 4 5 6 7 8  
  s \ k  6 7 8 

4 

5 

6 

7 

8 

9 

10 

 

 

 

 

0.138 

0.154 

0.164 

 

0.121 

0.168 

0.162 

0.178 

0.195 

0.189 

0.091 

0.177 

0.194 

0.196 

0.203 

0.206 

0.191 

0.135 

0.204 

0.215 

0.207 

0.216 

0.208 

0.191 

*0.171 

*0.220 

0.228 

*0.215 

*0.218 

*0.208 

*0.191 

 4 

5 

6 

7 

8 

9 

10 

 

0.088 

0.126 

0.131 

0.156 

0.169 

0.155 

0.073 

0.143 

0.168 

0.171 

0.182 

0.179 

0.167 

*0.117 

*0.172 

*0.185 

*0.182 

0.186 

*0.180 

*0.172 

Table 5: 
  
c

eff
(HB(k,s,9))as function of  k  and  s    Table 6: 

  
c

eff
(HB(k,s,10)) as 

function of  k  and  s  

 

  s \ k 6 7 8  
  s \ k  7 8 

4 

5 

6 

7 

8 

9 

10 

 

 

0.029 

0.086 

0.106 

0.114 

0.115 

 

0.080 

0.092 

0.123 

0.135 

0.146 

0.139 

*0.053 

*0.126 

*0.142 

*0.143 

0.156 

*0.155 

*0.143 

 5 

6 

7 

8 

9 

10 

0.010 

0.035 

0.062 

0.100 

0.097 

0.089 

*0.057 

*0.091 

*0.097 

0.116 

*0.112 

*0.103 

Table 7: 
  
c

eff
(HB(k,s,11))as function of  k  

and  s  

 Table 8: 
  
c

eff
(HB(k,s,12))as 

function of  k  and  s  

 

Table 9 lists 
  
max

k
c

eff
(HB(k,s,p)), which are the numbers with 

an asterisk and the boldface numbers in Table 1–8. 

In Table 9, as expected, for a given  s , 
  
c

eff
(HB(k,s,p)) 

decreases with increasing 
 p

. It is also seen that 
  
c

eff
(HB(k,s,p)) 

of orders   p = 5,6,...,12 are among the highest when the number 

of stages is about 6 to 10.  

Hence, based on the 
  
c

eff
, it seems that there are very few 

HB families which can have methods up to order 12 with good 

  
c

eff
, namely, the 7-, 8-, 9- and 10-stage HB methods of order 5 

to 12. Especially, the 8-stage HB methods are among the most 
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efficient methods on hand at least in term of stability 

constraints.  

 

  p \ s   
4 5 6 7 8 9 10 

5 HB(6,4,5) 

0.392 

HB(5,5,5) 

0.405 

HB(3,6,5) 

0.404 

HB(3,7,5) 

0.426 

HB(2,8,5) 

0.447 

HB(2,9,5) 

0.438 

HB(2,10,5) 

0.425 

6 HB(7,4,6) 

0.339 

HB(7,5,6) 

0.345 

HB(6,6,6) 

0.349 

HB(5,7,6) 

0.351 

HB(6,8,6) 

0.347 

HB(5,9,6) 

0.345 

HB(5,10,6) 

0.355 

7 HB(7,4,7) 

0.287 

HB(7,5,7) 

0.296 

HB(6,6,7) 

0.305 

HB(6,7,7) 

0.293 

HB(7,8,7) 

0.287 

HB(5,9,7) 

0.290 

HB(4,10,7) 

0.283 

8 HB(8,4,8) 

0.239 

HB(8,5,8) 

0.259 

HB(8,6,8) 

0.261 

HB(8,7,8) 

0.244 

HB(7,8,8) 

0.244 

HB(7,9,8) 

0.240 

HB(6,10,8) 

0.237 

9 HB(8,4,9) 

0.171 

HB(8,5,9) 

0.220 

HB(8,6,9) 

0.228 

HB(8,7,9) 

0.215 

HB(8,8,9) 

0.218 

HB(8,9,9) 

0.208 

HB(6,10,9) 

0.191 

10 HB(8,4,10) 

0.171 

HB(8,5,10) 

0.172 

HB(8,6,10) 

0.185 

HB(8,7,10) 

0.182 

HB(8,8,10) 

0.186 

HB(8,9,10) 

0.180 

HB(8,10,10) 

0.172 

11 HB(8,4,11) 

0.053 

HB(8,5,11) 

0.126 

HB(8,6,11) 

0.142 

HB(8,7,11) 

0.143 

HB(8,8,11) 

0.158 

HB(8,9,11) 

0.155 

HB(8,10,11) 

0.143 

12  

 

HB(8,5,12) 

0.057 

HB(8,6,12) 

0.091 

HB(8,7,12) 

0.097 

HB(8,8,12) 

0.116 

HB(8,9,12) 

0.112 

HB(8,10,12) 

0.103 

Table 9: 
  
max

k
c

eff
(HB(k,s,p)) of 

  HB(k,s,p) for  k -step methods combined 

with RK5 as function of  s  and 
 p

. 

 

In Fig.1,
  
max

k
c

eff
(HB(k,s,p)),  p = 5,6,...,12, is plotted as a 

function of the stage number  s . We note that, for a given   p ³ 5 , 

generally, 
  
max

k
c

eff
(HB(k,s,p)) first increases with  s  and then 

decreases.  

Figure 2 plots 
  
max

k,s
c

eff
(HB(k,s,p)) as a function of the 

order 
 p

. We note that, as expected, 
  
max

k,s
c

eff
(HB(k,s,p)) 

decreases with increasing 
 p

.  
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HB order 5 ´ , HB order 6 , HB 

order 7  HB order 8 à , HB order 

9 Ñ , HB order 10  » , HB order 11 

*, HB order 12  » . 

Figure 1: 
  
max

k
c

eff
(HB(k,s,p)) as 

function of  s  for orders 

  p = 5,6,...,12. 

Figure 2: 

  
max

k,s
c

eff
(HB(k,s,p)) 

versus order 
 p

.  

 

6. CONCLUSION 

  

In our work, a collection of new optimal SSP explicit,  k -step, 4- 

to 10-stage Hermite–Birkhoff methods, 
  HB(k,s,p), of orders 

  p = 5,6,...,12 with nonnegative coefficients are constructed by 

combining  k -step methods with  s -stage RK methods of order 5. 

The canonical Shu–Osher by means of vector is also introduced. 

Moreover, the largest effective SSP coefficients of HB methods 

of order 
 p

 have also been found on hand. Compared to some 

well–known methods of the same orders such as 
  HM(k,p) and 

  TSRK(s,p), our new methods have larger effective SSP 

coefficients.  

 

REFERENCES 

 

[1] Cockburn B. and Shu C.W., ―TVB Runge–Kutta local 

projection discontinuous Galerkin finite element method for 



Huong Nguyen-Thu, Truong Nguyen-Ba- Strong-stability-preserving Hermite – 

Birkhoff time discretization methods combining k-step methods and explicit 

s-stage Runge–Kutta methods of order 5 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 3 / June 2016 

2603 

conservation laws II: General framework‖, Math. Comp., 52 

(1989), 411-435. 

[2] Gottlieb S., ―On high order strong stability preserving 

Runge–Kutta and multi step time discretizations‖, J. Sci. 

Comput., 25 (2005), 105-128. 

[3] Gottlieb S., Ketcheson D.I. and Shu C.W., ―High order 

strong stability preserving time discretization‖, J. Sci. Comput., 

38(3) (2009), 251-289. 

[4] Gottlieb S., Ketcheson D.I. and Shu C.W.. Strong Stability 

Preserving Runge--Kutta and Multistep Time Discretizations. 

Singapore: World Scientific, 2011. 

[5] Gottlieb S., Shu C.W. and Tadmor E., ―Strong stability-

preserving high-order time discretization methods‖, SIAM Rev., 

43 (2001), 89-112. 

[6] Harten A., ―High resolution schemes for hyperbolic 

conservation laws‖, J. Comput. Phys., 49 (1983), 357-393. 

[7] Huang C., ―Strong stability preserving hybrid methods‖, 

Appl. Numer. Math., 59 (2009), 891-904.  

[8] Ketcheson D.I., ―Computation of optimal monotonicity 

preserving general linear methods‖, Math. Comp., 78 (2009) 

1497-1513. 

[9] Ketcheson D.I., Gottlieb S. and Macdonald C.B., ―Strong 

stability two-step Runge–Kutta methods‖, Report Number 11/7, 

Oxford Centre For Collaborative Applied Mathematics, 

Mathematical Institute, University of Oxford, 2011. 

[10] Nguyen-Ba T., Kengne E. and Vaillancourt R., ―One-step 4-

stage Hermite—Birkhoff–Taylor ODE solver of order 12‖,Can. 

Appl. Math. Q., 16 (2008), 77-94. 

[11] Nguyen-Ba T., Nguyen-Thu H., Giordano T. and 

Vaillancourt R., ―Strong-stability-preserving 7-stage Hermite–

Birkhoff time-discretization methods‖, J. Sci. Comput., 

50(2012), 63-90. 

[12] Nguyen-Ba T., Nguyen-Thu H., Giordano T. and 

Vaillancourt R., ―Strong-stability-preserving 6-stage Hermite–



Huong Nguyen-Thu, Truong Nguyen-Ba- Strong-stability-preserving Hermite – 

Birkhoff time discretization methods combining k-step methods and explicit 

s-stage Runge–Kutta methods of order 5 

 

 

EUROPEAN ACADEMIC RESEARCH - Vol. IV, Issue 3 / June 2016 

2604 

Birkhoff time-discretization methods of  order 4 to 12‖, 

Automation Computers Applied Mathematics, 21(2012), 5-28. 

[13] Nguyen-Thu H., Nguyen-Ba T. and Vaillancourt R., 

―Strong-stability-preserving, Hermite–Birkhoff time-

discretization based on  k-step methods and 8-stage explicit 

Runge–Kutta methods of order 5 and 4‖, J. Comput. Appl. 

Math., 263(2014), 45-58. 

[14] Osher S. and Chakravarthy S., ―High resolution schemes 

and the entropy condition‖, SIAM J. Numer. Anal., 21 (1984), 

955-984. 

[15] Ruuth S.J. and Spiteri R.J., ―High-order strong-stability-

preserving Runge–Kutta methods with down-biased spatial 

discretizations‖, SIAM J. Numer. Anal., 42 (2004), 974-996. 

[16] Ruuth S.J. and Spiteri R.J., ―Two barriers on strong-

stability-preserving time deiscretization methods‖, J. Sci. 

Comput., 17(2002), 211-220.  

[17] Ruuth S.J. and Spiteri R.J., ―A new class of optimal high-

order strong-stability-preserving time-stepping schemes‖, SIAM 

J. Numer. Anal., 40 (2002), 469-491. 

[18] Sweby P.K., ―High resolution schemes using flux limiters 

for hyperbolic conservation laws‖, SIAM J. Numer. Anal., 

21(1984), 995-1011. 

 


