

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

Theoretical study of Bromine substituent effects in ortho-, meta- and para- positions of acetophenone on electronic - structural properties and IR spectrum via density functional theory

KHULOOD OBAID KZAR Chemistry Department, College of Science Kerbala University, Iraq

Abstract:

Density functional theory (DFT) was used to systematically examine the effects of bromine (Br) substituted on electronic and structural properties of acetophenone. The B3LYP/CEP-121G protocol has been used for structure optimization and all other properties .The optimized structures, total energies, thermodynamic data, electronic states, energy gaps, ionization potentials, electron affinities, chemical potential, global hardness, softness, global electrophilicity, dipole moment, dipole polarizability and isodesmic reaction were calculated. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed for all compounds and compared with available experimental data (3-bromoacetophenone isomer only). The observed and the calculated frequencies are found to be in a good agreement. The results showed a decrease in gap energies for bromoacetophenone isomers leads to high reactivity.

Key words: DFT, Ionization potential, electron affinity, energy gap, and IR spectrum

1. Introduction

Aromatic compounds are a large class of conjugated π -electron systems of great importance in many research areas, such as materials science, astrochemistry and molecular electronics [1].

Aromatic ketones such as acetophenone, propiophenone and their derivatives have great analytical and pharmaceutical applications. 3-bromoacetophenone is used as an intermediate product for the preparation of fenoprofen which is an antianalgesic inflammatory, and antipyretic drug [2,3].Bromoacetophenone compounds are used to synthesis analytical reagents for Pd(II) [4] and a gravimetric reagent for 4-Bromoacetophenonederivatives V(V)[5]. which upon excitation can generate monophenyl radicals capable of hydrogen atom abstraction were investigate as photoinducible DNA cleaving agents [6], the isomer is also used in multiple tandem reactions with catalysis[7]. 2-Bromoacetophenone with cytosine are used for the determination of global DNA methylation which provide biologically important information [8] . Chemically it is called as 1-(3-bromophenyl)-ethanone. Alzheimer's disease (progressive form of presenile dementia) is treated with the drug which was invented from 3bromoacetophenonone [9]. It is used as a reaction initiator with organopolysiloxane, which is the base polymer to prepare silicone rubber [10]. It is also used as a coupling partner in microwave accelerated cross- coupling of a range of arvl boronic acids with aryl chlorides [11]. Substituted bromoacetophenone are used to synthesis dicationic diarylpyridines which are used as nucleic acid binding agents [12].

The title compound is used as an antibacterial agent [13]. It is also used as a photo radical polymerization initiator to provide a cross linkable silyl group terminated vinyl poly [14]. Density functional theory (DFT), accepted by the ab initio quantum chemistry community is a cost-effective general procedure for studying physical properties of the molecules. DFT calculations of vibrational spectra of many organic systems [15,16], have shown promising conformity with experimental results. Therefore, in this present investigation DFT technique is employed to study the complete vibrational

spectra of the title compounds and to identify the various normal modes with greater wave number accuracy.

Literature survey reveals that to the best of our knowledge no DFT/ B3LYP/CEP-121G frequency calculations of acetophenone and its bromoacetophenone isomers have been reported so far. It may be due to difficulty in interpreting the spectra of these molecules because of their complexity and low symmetry. Hence the present investigation was undertaken to study the vibrational spectra of these molecules completely and to identify the various normal modes with greater wave number accuracy. Assuming C1 point group symmetry the band assignments have made. Density Functional Theory (DFT) calculations has been performed to support our wave number assignments. The theoretically predicted IR intensities are well in agreement with that of experimental spectral data.

2. Computational details

The entire calculations conducted in the present work were performed at B3LYP levels included in the Gaussian 03W package [17] program together with the CEP-121G basis set function of the density functional theory (DFT) utilizing gradient geometry optimization[18]. All the geometries were then optimized using CEP-121G by density functional theory (DFT) [19] employing the Becke's three-parameter hybrid functional [20] combined with Lee-Yang-Parr correlation [21] functional (B3LYP) method. The hybrid functional B3LYP had been shown to be highly successful for calculation the electronic properties such as ionization potentials, electronic states and energy gaps [22],[23].

The DFT partitions the electronic energy as E = ET+EV+EJ+EXC, where ET, EV, and EJ are the electronic kinetic energy, the electron nuclear attraction and the electron-electron repulsion terms respectively. The optimized structural

parameters were used in the vibrational frequency calculations at the DFT levels to characterize all stationary points as minima. Then vibrationally averaged nuclear positions of acetophenone and its derivatives with Bromine substituent are used for harmonic vibrational frequency calculations resulting in IR frequencies with intensities. The DFT hybrid B3LYP functional also tends to overestimate the fundamental modes in comparison to the other DFT methods; therefore, scaling factors have to be used to obtain considerably better agreement with experimental data. Thus according to the work of Rauhut and Pulay [24]. Finally, calculated normal mode vibrational frequencies, provide thermodynamic properties by way of statistical mechanics. By combining the results of the Gauss. view program [25] with symmetry considerations, vibrational frequency assignments were made with high degree of accuracy. There is always some ambiguity in defining internal coordination. However, the defined coordinate form complete set and matches guite well with the motions observed using the Gauss. view program. To achieve a close agreement between observed and calculated frequencies, the least square fit refinement algorithm was used. HOMO-LUMO energy gaps has been computed and other related molecular properties are calculated. In this investigation, the more relevant ionization potential (IP), electron affinities (EA), hardness (n), electric dipole polarizability (α), softness (S), electrophilic index (ω) and chemical potential (K) (it is the negative of electronegativity (x)), were calculated. The HOMO and LUMO energy was used to estimate the IP and EA in the frame work of Koopmans' theorem:

IP = -EHOMO and EA= -ELUMO, The hardness corresponds to the gap between the HOMO and LUMO orbital energies. The larger the HOMO-LUMO energy gap the harder the molecule. The global hardness, $\eta = 1/2$ (ELUMO – EHOMO). The hardness has been associated with the stability of chemical

system [26]. Here, *a* is a second-rank tensor property called the dipole polarizability and mean polarizability $\langle \alpha \rangle$ is evaluated using the relation [27], $\langle a \rangle = 1/3 (a_{xx} + a_{yy} + a_{zz})$. The electron affinity can be used in combination with ionization energy to give electronic chemical potential, K=1/2(EHOMO+ELUMO), The global electrophilicity index, $\omega = K^2/2\eta$ is also calculated and softness S= 1/2 η [28]. Density functional theory has also been used to calculate the dipole moment μ , the total dipole moment is defined by [29],[30]:

 $\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2} .$

3. Results and discussion

3.1. Molecular geometry:

Geometry optimization is one of the most important steps in the theoretical calculations. The molecular structure, XRD studies have been studied for the compound m-chloroacetophenone and m-nitroacetophenone. Since the compound chosen for the present study has close structural relation with the abovementioned compounds, the molecular parameters have been taken from m-chloroacetophenone and m-nitroacetophenone [31,32]. The optimized structure parameters of molecules calculated by DFT-B3LYP levels with the CEP-121G basis set are listed in the table1 in accordance with the atom numbering scheme given in figure1. Table 1 compares the calculated bond lengths and angles for acetophenone molecule with those of its bromoacetophenone isomers, on the other side the table include comparison with experimentally available from X-rav diffraction data fore (3- bromoacetophenone isomer only) while for other studied isomers it has not been found a reference data. the calculated lengths 3bond and angles for bromoacetophenone with those experimentally available from X-ray diffraction data [31, 32]. From the theoretical values, we can find that most of the optimized bond angles and bond

length are slightly larger than the experimental values, due to the theoretical calculations belong to isolated molecules in gaseous phase and the experimental results belong to molecules in solid state[26],on the other side there is small difference between the optimized bond angles and bond length for acetophenone from its for bromoacetophenone isomers excepting that the nearest angles and bonds to Br substitute which are slightly larger than its in acetophenone may be due to the withdrawing effect for Br substitute .

3.2 Energies

Table 2 shows the values of the total energy and electronic states for the analyzed structures and the energy gap(of the studied molecules). The total energies for all studied molecules as a linear function of bromine substituted to the acetophenone molecule. It is clear that from table 2, the total energy for all isomers is increase and depending on the atomic number of halogen atom, and it is observed that substitution of bromine (electron-accepting) causes decreasing the HOMO and LUMO energy, it is known that the electron accepting substituents decreasing the LUMO and HOMO energies [33], and energy gap decreased. The frontier orbital (HOMO and LUMO) of the chemical species very important in are defining its The LUMO-HOMO reactivity[34] energy gaps of bromoacetophenone is small than that of the original molecule, with decreasing energy gap, electrons can be easily excited from the ground state. This effect of the side group was the largest in 3-bromoacetophenone which have energy gap of (0.179 a.u). The table 2 shows also the symmetry of studied molecules, the all molecules have C₁ symmetry.

3.3 Some important variables

B3LYP functional used in this study has a high efficient to calculate the electronic properties for the organic studied

molecules, such as ionization potentials (IP), electron affinities (EA), chemical potential (K), absolute hardness (η), absolute softness (S), electrophilic index (ω). The properties are computed by the way that is based on the differences between the HOMO and the LUMO energies of the neutral molecule and is known as orbital-vertical (Koopmans' theorem).

The calculated properties for each variable clearly reveal that the ionization potential for the bromoacetophenone isomers is higher than that for the original molecule, but the 2-Bromo1-phenylethanone molecule has the largest value of ionization potential, this indicates that this molecule needs high energy to become cation comparing with the others.

The strength of an acceptor is measured by its electron affinity (EA) which the energy released when adding one electron to LUMO. An acceptor must have a high EA, adding the Br atom to acetophenone molecule leads to increasing the ability of the electron affinity for the molecule; EA for molecule 2-Bromo1-phenylethanone is the largest, as we see in table 4. The Koopmans' theorem is a crude but useful and fast approach The behavior of electronegativity, softness [33, 35].and electrophilic index for the studied molecules shows the magnitude larger than these for the original molecule, adding the Br atom gives the molecules more softness. The larger the HOMO-LUMO orbital energy gap, the harder the molecule. The hardness has been associated with the stability of the chemical system[34]. In the present study, acetophenone molecule is the largest HOMO-LUMO gap and hardness of the molecules as shown in table 2 and table 4, which clearly indicates that the molecule is the most stable.

3.4 Molecular polarizability and the Dipole moment

One of the objectives of the present investigation is to study the effect of the basis sets B3LYP/ CEP-121G levels on molecular polarizability of acetophenone and its bromo acetophenone

isomers using the Gaussian03W program. In this study, the computation of the molecular polarizability $\langle a \rangle$ was reported, 4-Bromoacetophenone molecule has the largest polarizability. The calculated dipole moment values show that the acetophenone molecule is highly polar and more than its bromo acetophenone isomers. The calculated dipole moment and polarizabilities by DFT method are summarized in Table 3.

3.5 Thermodynamic properties

On the basis of vibrational analysis at B3LYP/ CEP-121G level, several thermodynamic parameters are calculated and are presented in Table 5. Table 5 showed that acetophenone compound less entropy ΔS° and larger in the $\Delta U^{\circ}, \Delta H^{\circ}, \Delta A^{\circ}$ and ΔG° properties than those of its bromoacetophenone isomers, this because Br substituent effect .

3.6 Electronic densities

The electron densities for acetophenone molecule and their bromoacetophenone isomers were listed in (Table 6). Electron densities are different in the molecules because the Br substituent effect.

3.7 Isodesmic reaction

The stabilizing effect of a substituent is often assessed by using isodesmic reactions (conserved bond type). A positive energy difference (Δ) (Table 7) indicates stabilization of the reactant by substituent [36], so the negative Δ refers to more reactivity for reactants (bromoacetophenone) than those for products (acetophenone). The largest Δ was reported for 2-Bromo1-phenylethanone isomer so it is high reactive.

3.8 Vibrational assignments

3.8.1 C-H Vibrations

The aromatic structure shows the presence of C-H stretching vibrations in the region 3250 cm⁻¹ - 2950 cm⁻¹ which is characteristic region for the ready identification of C-H stretching vibrations and particularly the regions 3250 cm⁻¹ -3100 cm⁻¹ for asymmetric stretching and 3100 cm⁻¹ - 2950 cm⁻¹ for symmetric stretching modes of vibration [37]. For most cases, the aromatic compound C-H vibration absorption bands are usually weak; in many cases it is too weak for detection. In this region, the bands are not affected, appreciably by the nature of substituents. In the present work, for the bromoacetophenone isomers, the FTIR bands observed at 3238 cm⁻¹,3228 cm⁻¹, 3220 cm⁻¹ and 3197 cm⁻¹ have been assigned to C-H stretching vibration. The B3LYP level at CEP-121G gives slightly different frequency values at 3211 cm⁻¹, 3201 cm⁻¹, 3164 cm⁻¹ and 3137 cm⁻¹ as indicated in Table 8. In general the aromatic C-H stretching vibrations calculated theoretically are in good agreement with the experimentally reported values [38-39] for di substituted benzene in the region 3200 - 2900 cm⁻¹. The titled compounds have both out-of-plane and in-plane aromatic C-H bending vibrations. The out of plane bending mode of C-H vibration is found well in agreement with the experimentally predicted in the region 1000-600 cm^{\cdot 1} [40]. At B3LYP/ CEP-121G, 982 and 834 cm⁻¹, is calculated. The observed FTIR value of 996 cm⁻¹ is in excellent agreement with 982 cm⁻¹ of B3LYP/ CEP-121G results. The out of plane C-H deformation vibrations of 3-bromoacetophenone is experimentally predicted in the region 636 and 996 cm⁻¹ coincides satisfactorily with the calculated values in the same region. The aromatic C-H in-plane bending modes of benzene and its derivatives are observed in the region 1300-1000 cm⁻¹ [41]. The C-H in plane bending vibrations assigned even though

found to be contaminated by C-CH3 stretch are found in literature [42,43], while the experimentally observed values for 3-bromoacetophenone is at 1268 cm⁻¹. The C-H in-plane bending vibration of 3-bromoacetophenone coincides satisfactorily with the experimentally observed values in this region.

3.8.2 C-Br Vibrations

The compounds under consideration bromoacetophenone isomers have a bromine substitution. The heavier mass of bromine obviously makes the C-Br stretching mode to appear in longer wavelength region. Bellamy has assigned the region 700-600 cm⁻¹ for the C-Br stretching [44,45]. Based on this, the band observed at 660 cm⁻¹in FTIR is assigned to C-Br stretching. The theoretically calculated value for 3-bromoacetophenone 662 cm⁻ ¹ is well agreed with the experimental value, in the other isomers was 635, 652, 704 cm⁻¹ for 4-bromoacetophenone, 2bromoacetophenone and 2-Bromo1-phenyl ethanone respectively, in the last one the value is more than the other because the substitution is on the aliphatic C atom, so the C-Br stretching is higher than its in the other due to shorter C-Br bond and absence the ring delocalization [45].

3.8.3 Methyl group Vibrations

The compounds under consideration excepting 2-Bromo1phenyl ethanone possess a CH3 group in the side substitution chain. There are nine fundamentals one can expect to a CH3 group, namely the symmetrical stretching in CH3 (CH3 sym. stretch)and asymmetrical stretching (in plane hydrogen stretching mode); the symmetrical (CH3 sym. deform) and asymmetrical (CH3 asym. deform) deformation modes; in-plane rocking, out-of-plane rocking, twisting and bending modes [46]. Each methyl group has three stretching vibrations, one being symmetric and other two asymmetric. The frequencies of asymmetric vibrations are higher than the symmetric one [47].

theoretically computed values The 3016 cm^{-1} for CH3 symmetric stretching and 3091 cm⁻¹, 3137 cm⁻¹for CH3 asymmetric stretching shows an excellent agreement with the range allotted by Williams and Fleming [48]. CH3 asymmetric and symmetric in-plane bending are observed at 1470 and 1315 cm⁻¹ in FTIR, respectively [49]. The torsion vibrations are not observed in the FTIR because these appear at very low frequency. The observations at 41 cm⁻¹ in 3-bromoacetophenone is in agreement with theoretical results of similar compounds(69 .34 cm⁻¹ for 4-bromoacetophenone and 2bromoacetophenone respectively), table 8.

3.8.4 C=O Vibrations

The C=O stretching vibration in acetophenone and its bromoacetophenone isomers have a main contribution in the mode, with B3LYP/ CEP-121G) predicted frequencies at 1624 cm^{-1} (Table 8) for 3-bromoacetophenone, this is in agreement with the very strong experimental frequencies at 1635 cm⁻¹ in FTIR spectrum , while in the other compounds, the C=O stretching was1632, 1619, 1626 and 1612 cm^{-1} for 4bromoacetophenone, 2-bromoacetophenone, 2-Bromo1phenylethanone and acetophenone respectively. The out of plane C=O bending vibration mode of 3-bromoacetophenone with the experimental frequency of 140 cm⁻¹ found to be in excellent agreement. The above conclusions are in agreement with the literature value [50], and the same mode (out of plane C=O bending) was 148, 112, 125 and 160 cm⁻¹ for 4bromoacetophenone, 2-bromoacetophenone, 2-Bromo1phenylethanone compounds and acetophenone respectively.

4. Conclusion

The results of the study lead to the following conclusions. (i) The proper frequency assignments for the compounds is

performed for the first time from the FTIR. The experimental FTIR spectra for 3-bromoacetophenone was compared with the theoretical DFT calculations of the vibrational spectra of the molecule. (ii) The equilibrium geometries of compounds were determined and analyzed both at DFT level utilizing CEP-121G basis set, Geometry optimization for 3-bromoacetophenone has been found in a good agreement with experimental data. (iii) The HOMO-LUMO energy gap and other related molecular properties were discussed and reported. The presence of the Br substituent decreases the energy gap of the molecules study, this is one of the important properties obtained in this work, and a small energy gap means small excitation energies of manifold of the exited states. (iv) molecular polarizability was calculated and the results were discussed, the results showed that the Br substitution leads to increase the average polarizability and cause to more reactive than original molecule. (v) The electronic properties (IP, EA, K, η , S, ω) were calculated by using DFT.

Table 1: Optimized geometrical parameters of acetophenone and bromoacetophenone isomers, bond length (Å), Interaxial angles (°)

Molecules	bond	Our	Expt.[31,32]	bond angles	Our	Expt.[31,32]
	length	data			data	
acetophenone	C8-H17	1.097	-	H12-C3-C4	120.085	-
	C6-C7	1.510	-	C5-C4-C3	120.021	-
	C10-C8	1.532	-	H14-C5-C4	121.310	-
	C4- H13	1.087	-	C6-C1-C2	120.388	-
	C7-O9	1.265	-	C6-C7-O9	119.795	-
	C5-C4	1.408	-	H10-C1-C2	118.855	-
	C2-C3	1.413	-	C8-C7-C6	121.716	-
	C1-C6	1.420	-	H11-C2-C1	120.076	-
2-Bromo	C9-H17	1.095	-	H13-C3-C4	119.567	-
acetophenone	C6-C7	1.529	-	C5-C4-C3	120.107	-
	C7-C9	1.525	-	Br10-C5-C6	125.043	-
	C5-Br10	1.983	-	C6-C1-C2	122.532	-
	C7-O8	1.264	-	C6-C7-O8	117.856	-
	C5-C4	1.415	-	H11-C1-C2	121.039	-
	C2-C3	1.413	-	C9-C7-C6	123.855	-
	C1-C6	1.430	-	H12-C2-C1	119.893	-
3-Bromo	C10-H15	1.097	1.113	H13-C3-C4	120.578	120.000
acetophenone	C6-C8	1.514	1.351	C5-C4-C3	122.021	120.000
	C10-C8	1.531	1.512	H14-C5-C6	121.538	120.000
	C4-Br7	1.972	1.881	C6-C1-C2	120.492	120.000
	C8-O9	1.264	1.208	C6-C8-O9	119.634	120.000
	C5-C4	1.409	1.395	H11-C1-C2	121.365	120.000
	C2-C3	1.417	1.395	C10-C8-C6	121.819	120.000
	C1-C6	1.422	1.395	H12-C2-C1	120.076	120.000
4-Bromo	C9-H17	1.098	-	Br10-C3-C4	119.059	-
acetophenone	C6-C7	1.510	-	C5-C4-C3	118.731	-
	C7-C9	1.529	-	H14-C5-C6	120.643	-
	C3-Br10	1.966	-	C6-C1-C2	120.863	-
	C7-O8	1.263	-	C6-C7-O8	120.142	-
	C1-C2	1.409	-	H11-C1-C2	120.727	-
	C4-C3	1.410	-	C9-C7-C6	119.767	-
	C1-C6	1.419	-	H12-C2-C1	120.753	-
2-Bromo1-	C9-H17	1.091	-	H13-C3-C4	120.128	-
phenylethanone	C6-C7	1.500	-	C5-C4-C3	120.462	-
	C7-C9	1.552	-	H15-C5-C4	119.214	-
	C9-Br10	2.037	-	C6-C1-C2	120.717	-
	C7-O8	1.268	-	C6-C7-O8	119.840	-
	C5-C4	1.413	-	H11-C1-C2	120.960	-
	C2-C3	1.417	-	C9-C7-C6	129.967	-
	C1-C6	1.428	-	H12-C2-C1	119.815	-

Table 2: Total energy, Electronic states and Energy gap for molecule	es
calculated by DFT with B3LYP system and CEP-121G basis set.	

Molecule	Symmetry	Energy	Electronic	Energy Gans (a.u)	
		(u.u)	номо	LUMO	Gups (u.u)
acetophenone	C_1	-65.8964	-0.2597	-0.0728	0.1869
2-Bromoacetophenone	C_1	-78.6563	-0.2665	-0.0808	0.1857
3-Bromoacetophenone	C_1	-78.6637	-0.2638	-0.0843	0.1757
4-Bromoacetophenone	C_1	-78.6662	-0.2649	-0.0816	0.1832
2-Bromo1-phenylethanone	C_1	-78.6553	-0.2735	-0.0885	0.1850

Table 3: calculated dipole moment μ (debye), components of αi (i = xx,yy,zz) an average of the dipole polarizability < α > in atomic units for molecules.

Molecule	μ	a _{xx}	α_{yy}	azz	< a >
acetophenone	3.4867	126.317	98.521	45.104	89.98
2-Bromoacetophenone	2.8226	139.675	129.797	47.821	105.76
3-Bromoacetophenone	1.4260	155.397	116.150	47.160	106.23
4-Bromoacetophenone	2.7222	173.288	103.635	47.200	108.04
2-Bromo1-phenylethanone	2.3747	142.377	128.394	46.472	105.74

Table 4: Comparison of related molecular properties of acetophenone with its bromoacetophenone isomers calculated by DFT with B3LYP system and CEP-121G basis set.

Molecule	IP	EA	K	S	η	Х
acetophenone	0.2597	0.0728	-0.1663	5.348	0.0934	0.1663
2-Bromoacetophenone	0.2665	0.0808	-0.1736	5.384	0.0928	0.1736
3-Bromoacetophenone	0.2638	0.0843	-0.1741	5.571	0.0897	0.1741
4-Bromoacetophenone	0.2649	0.0816	-0.1733	5.457	0.0916	0.1733
2-Bromo1-phenylethanone	0.2735	0.0885	-0.1810	5.404	0.0925	0.1810

Table 5: Comparison of Thermodynamic properties of acetophenone with its bromo -acetophenone isomers calculated by DFT with B3LYP system and CEP-121G basis set.

Malaaula	$\Delta \mathrm{U}^{\circ}$	ΔH°	ΔS°	ΔA°	$\Delta \mathrm{G}^{\circ}$
Molecule	(kcal/mole)	(kcal/mole)	(cal/mole K)	(kcal/mole)	(kcal/mole)
acetophenone	90.406	90.99842	85.330	64.96486	65.55728
2-bromo acetophenone	84.812	85.40442	91.568	57.51100	58.10342
3-bromo acetophenone	84.845	85.43742	95.579	56.34812	56.94054
4-bromo acetophenone	85.404	85.99642	97.503	56.33348	56.92590
2-Bromo1- phenylethanone	85.269	85.86142	95.905	56.67492	57.26734

Table 6. Electronic densities for all molecules calculated by DFT with B3LYP system and CEP-121G basis set

Atom	Aceto	Atom	3-Br.aceto	Atom	4-Br.	Atom	2-Br.	Atom	2-Br.1-
	phenone		phenone		aceto		aceto		phenyl
					phenone		phenone		ethanone
C_1	4.185615	C_1	4.258151	C_1	4.235503	C_1	4.258897	C_1	4.261283
C_2	4.16965	C_2	4.112427	C_2	4.10378	C_2	4.140372	C_2	4.142051
C_3	4.14233	C_3	4.119201	C_3	4.359124	C_3	4.110969	C_3	4.143182
C_4	4.143278	C_4	4.393534	C_4	4.123771	C_4	4.11102	C_4	4.188235
C_5	4.254717	C_5	4.131932	C_5	4.132466	C_5	4.457237	C_5	4.125215
C_6	3.651727	C_6	3.638567	C_6	3.68453	C_6	3.582575	C_6	3.576297
C_7	4.128597	Br_7	6.851167	C_7	4.07901	C ₇	4.039487	C_7	4.11998
C_8	4.592329	C_8	4.122377	O ₈	6.121537	O ₈	6.13181	O_8	6.132769
O_9	6.132994	O_9	6.125523	C_9	4.656785	C_9	4.664267	C ₉	4.722883
H_{10}	0.819933	C10	4.591251	Br_{10}	6.850297	Br_{10}	6.802792	Br_{10}	6.917037
H ₁₁	0.843527	H_{11}	0.776626	H_{11}	0.782411	H_{11}	0.779687	H ₁₁	0.777316
H_{12}	0.842802	H_{12}	0.833219	H_{12}	0.801962	H_{12}	0.828317	H_{12}	0.835795
H_{13}	0.83968	H_{13}	0.807417	H_{13}	0.805251	H_{13}	0.835285	H_{13}	0.838602
H_{14}	0.783683	H_{14}	0.782089	H_{14}	0.806465	H_{14}	0.813575	H_{14}	0.835810
H_{15}	0.845938	H_{15}	0.84146	H_{15}	0.807083	H_{15}	0.814707	H_{15}	0.846979
H_{16}	0.811585	H_{16}	0.807518	H_{16}	0.824990	H_{16}	0.814550	H_{16}	0.768309
H ₁₇	0.811614	H_{17}	0.807542	H ₁₇	0.825034	H_{17}	0.814454	H ₁₇	0.768257

Table 7. Evaluation of substituted effects (energies Δ , in a. u)

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 10 / January 2016

Table8:Vibrationalwavenumbersobtainedfor3-bromoacetophenone at B3LYP/ CEP-121G [harmonic frequency (cm⁻¹)]1R intensities (km mol⁻¹).

acetoph	ienone	2-Br.1-j ethanor	phenyl ne	2-Br. phenon	aceto e	4-Br. phenone	aceto	3-Br.acet	ophenone		Characterization
□ _{cal} cm ⁻¹	IR int.	□ _{cal} cm ⁻¹	IR int.	□ _{cal} cm ⁻¹	IR int.	□ _{cal} cm ⁻¹	IR int.	□ _{cal} cm ⁻¹	IR int.	□ _{exp} cm ⁻¹	Normal modes
22	0.899	13	11.13	34	2.09	69	3.49	41	0.782	-	τCH3 torsion
45	4.88	33	1.40	82	6.11	78	1.76	59	0.943	-	lattice vibration
160	0.077	125	1.83	112	0.426	148	3.58	140	7.97	-	γ C=O + γ CH
231	6.10	157	0.055	174	0.465	165	0.194	144	2.54	-	CH3 torsion
369	0.791	193	3.71	205	0.557	237	2.00	154	0.020	-	CH3 torsion+ BCH
-	-	348	4.10	240	0.321	246	0.581	186	0.597	-	γ C-Br
-	-	415	0.058	270	8.39	273	2.69	276	3.19	-	β C-Br
468	2.088	427	0.194	275	2.00	412	7.43	295	6.355	-	в С-Н
570	27.29	428	5.32	393	7.31	421	0.031	371	0.638	430	ү С-Н
616	9.66	535	31.38	430	0.296	464	6.014	432	0.473	-	γ C-H
628	0.672	581	3.65	487	5.18	488	15.02	472	4.09	538	γ C-C-C
710	38.67	628	0.017	591	23.94	579	9.24	478	1.41	590	в С-С-О
-	-	667	66.17	601	3.44	598	9.29	576	30.37	636	CH3 twisting+ u C-Br
-	-	704	28.20	652	7.95	635	1.041	662	0.119	660	u C-Br
889	0.475	745	40.17	723	5.78	714	8.07	661	14.32	683	ring breathing
972	3.531	792	78.61	743	12.98	744	26.71	701	16.47	785	B C-C-C
979	20.32	886	1.72	804	74.10	856	53.09	768	26.97	838	γ C-H
1002	1.763	895	0.151	913	0.229	878	21.23	834	59.53	901	γ C-H
1020	0.978	985	1.572	977	19.67	971	45.73	919	13.70	960	γ C-H
1033	5.536	998	1.85	1010	3.76	988	0.082	975	1.18	987	γ C-H
1048	2.96	1024	16.22	1016	56.94	1015	54.95	982	16.66	996	γ C-H
1069	0.682	1029	0.549	1046	1.63	1034	0.963	998	6.85	1020	δ ring + γC-H
1086	1.639	1048	2.13	1048	1.78	1062	28.41	1044	4.16	1064	CH3 twisting
1103	7.002	1049	0.715	1069	0.35	1066	0.144	1067	38.80	1091	γ C-H + β C-C
1192	0.576	1105	3.44	1101	2.92	1093	11.96	1068	0.78	1101	6 С-Н
1210	18.23	1195	0.790	1138	0.551	1129	5.43	1096	0.40	1124	υ C-C+ β C-H
1280	214.85	1200	1.250	1197	2.10	1209	15.17	1116	6.16	1186	δ C-H
1338	6.290	1217	34.31	1266	83.95	1289	195.47	1199	6.10	1268	и C-C+ 8C-H
1355	4.183	1259	106.6	1290	106.18	1329	3.27	1270	269.04	1315	ρ C-H
1421	37.03	1288	187.3	1323	13.23	1334	7.37	1319	18.10	1357	γC-C
1462	16.94	1344	5.78	1425	25.46	1406	7.58	1340	2.19	1405	CH3 wagging
1495	9.92	1362	6.28	1441	42.51	1423	63.63	1427	39.15	1450	u C-C
1497	11.32	1446	18.12	1480	37.33	1490	36.45	1483	0.53	1470	δ C-H3
1518	6.805	1462	19.32	1483	27.63	1504	13.51	1494	10.54	1494	u C-C
1586	106.13	1513	0.148	1496	15.65	1504	15.82	1509	17.24	1516	u C-C
1618	62.59	1557	164.4	1574	8.13	1580	56.18	1573	143.7	1566	u C-C
1629	16.28	1607	14.93	1602	108.8	1607	139.78	1607	29.16	1592	u C-C
1612	6.988	1626	17.66	1619	71.43	1632	89.28	1624	50.93	1635	υ C=O
3090	11.90	3078	3.527	3017	3.07	2999	5.56	3016	5.28	3066	us CH3
3133	21.39	3150	0.988	3100	10.61	3076	17.93	3091	10.08	3127	υ _{as} CH3
3147	0.504	3160	0.548	3133	20.69	3133	20.207	3137	20.60	3153	υ _{as} CH3
3160	13.76	3165	24.58	3158	5.62	3172	7.109	3164	10.99	3197	ring (u C-H)+ u C-H ₃
3174	36.89	3179	30.55	3177	17.32	3197	12.27	3201	14.79	3220	ring (u C-H)+ u C-H ₃
3194	9.68	3240	7.439	3201	17.61	3200	2.225	3211	2.19	3238	ring (u C-H)

REFERENCES:

[1] H. S. Nalwa (Ed), "Handbook of Organic Electronics and Photonics", (Los Angeles, CA: American Scientific Publishers), 2006.

[2] I. S. Amin and A. J. Walker," Process for preparing arylalkanoic acid derivatives" US patent 4142054, App No 05/807031,1979.

[3] A. E. Stephan, "Bromination of m-ethyldiphenyl ether "US Patent 4252624 App [4] A. M. DESAI," 2-Hydroxy-4-lsopropoxy-5-bromoacetophenone Oxime

as An Analytical Reagent for Palladium(II) Determination".3(2), 540-543, 2014.

[5] A. P. Nair and J. Christine, E-Journal of Chemistry, 6(2), 303-307, 2009.

[6] P. A. Wender and R. Jeon , J. Am. Chem. Society, Org. Lett., 1 (13), pp 2117–2120, 1999.

[7] A. Zanardi, J. A. Mata and E. Peris, J. Am. Chem. Soc., 131 (40), pp 14531–14537, 2009.

[8] A. L. Torres, E. Y. Barrientos, K. Wrobel, and K. Wrobel, Anal. Chem., 83 (20), pp 7999–8005, 2011.

[9]~S.~Cottens , " Halogenoalkylphenyl-alcohols, ketones and hydrates thereof ", US Patent 5166181 App No.07/567875 , 1992.

[10] H. Fujiki, T. Kimura; Tsuneo, T. Araki, "Silicone rubber compositions for rubber", Us patent 6770690,App No 10/263765, 2004.

[11] L. C. Matthew, B. F. Marcia, A. F. Jose , J. M. Edward and J. R. Geoffrey, 8epi-Salvinorin B: crystal structure and affinity at the κ opioid receptor Beilstein J. Org Chem., 3, 18, 2007.

[12] A. Kumar, R. A. Rhodes, J. Spychala, W.D. Wilson, D.W. Boykin, R. R. Tidwell, C. C. Dykstra, J. J. Hall, S. K. Jones and R. F. Schinazi, European J Med. Chem., 30(2), 99-106, 1995.

[13] P. M. Sivakumar, G. Sheshayan and M. Doble, " Experimental and QSAR of Acetophenones as Antibacterial Agents", Chem Bio & Drug Design., Vol 72 No 4, 303 - 313, 2008.

[14] O. T. Nakagawa, EP 1 923 431 A1, App no: 06797534.2, 2008.

[15] B.G. Johnson, P. M. Gill and J. A. Pople, J Chem Phys., 98, 5612, 1993.

[16] N. C. Handy, C. W. Murray, R. O. Amos, J Phys Chem., 97, 4392, 1993.

[17] M. J. Frisch et al., Gaussian, Inc., Wallingford CT 2004.

[18] HB Schlegel, J Comput. Chem, 3, 214, 1982.

[19] P. Hohenberg and W. Kohn,"Inhomogeneous Electron Gas" Phy Rev., 136, B864, 1964 .

[20] D. Becke," Density-functional thermochemistry. III. The role of exact exchange", J Chem Phys., 98, 5648, 1993.

[21] C. Lee, W. Yan and R. G. Parr," Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density" Phys Rev., B37, 785, 1998.

[22] V. Sahni, "Quantum Density Functional Theory II: Approximation Methods and Applications", Springer-Verlag, Berlin Heidelberg, 2010.

[23] F. Jensen, "Introduction to Computational Chemistry", 2nd ed., John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, England, 2007.

[24] G. Rauhut and P. Pauly, J Phys Chem., 99, 3093, 1995 .

[25] A. Frisch, A. B. Neilson and A. J. Holder, GAUSSVIEW user Manual, Gaussian Inc, Pittsburgh, PA 2000.

[26] P. Udhayakala , T. V. Rajendiran, S. Seshadri and S. Gunasekaran, J. Chem. Pharm. Res., 3(3):610-625 2011.

[27] S. Sagdinc, F. Kandemirli and S. H. Bayari , Spectrochim Acta Part A 66, 405, 2007 .

[28] A. T. Mohi, International Journal of Application or Innovation in Engineering & Management (IJAIEM)Vol. 2, Issue 10, October 2013.

[29] M. Oftadeh, S. Naseh, M. Hamadanian, "Electronic Properties and Dipole Polarizapility of Thiophene and Thiophenol Derivative Via Density Functional Theory", Computational and Theoretical Chemistry, (966), pp. 20-25, 2011.

[30] S. Rajesh Kumar, N. Vijay, K. Amarendra, P. Onkar and S. Leena, J. Chem. Pharm. Res., 4(6), pp. 3287-3296, 2012.

[31] C. P. Tang, H. C. Chang, R. Popovits-Biro, F. Frolow, M. Lahav, L. Leiserowitz and R. K. Mcmullan, J. Amer Chem Soc., Vol 107 (3), 4058, 1985.

[32] M. Bolte and M. Scholtyssik, Acta Crystl Sec C, Crystl Struct Comm., Vol. 53 (4), 474, 1997.

[33] P. Ravi, G. M. Gory, S. P. Tewari, and A. K. Sikder, Journal of Energetic Materials, 29: 209–227, 2011.

[34] S. Rajeev, D. Kumar, S. Bhoop, V. K. Singh and S. Ranjana, Res. J. Chem. Sci., Vol. 3(2), 79-84, February 2013.

[35] U. Salzner, J. B. Lagowski, P. G. Pickup, and R. A. Poirier,J. Comput. Chem., (18), pp.1943–1953, 1997.

[36] J. H. Ali, K. O. Kazar, Journal of Kerbala university, vol.11 (3),207-215, 2013.

[37] G. Varsanyi, Assignments for Vibrational spectra of Seven Hundred Benzene derivatives,vol 1 and 2 Academic Kiaclo, Budapest, 1973.

[38] N. B. Colthup, L. H. Daly and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Academic press, New York, P.226, 1964.

[39] E. B.Wilson (Jr.), D. C. Decius and P. C. Cross, Molecular vibrations, McGraw-Hill, New York, 1995.

[40] S. Mohan and R. Murugan , Ind J Pure Appl Phys., 30, 283, 1992 .

[41] E. James , J. Samuel and S. Mohan, Ind J Physics., B 77, 5, 575, 2003 .

[42] D. Becke, J Phys Chem., 98,3468, 1993.

[43] Y. Uesugi, M. Mizuno, A. Shimojima and H. Takahashi, J Phys Chem., A 101, 268, 1997.

[44] L. J. Bellamy, " Infrared Spectroscopy of Complex Molecules", Methuen, London 1954.

[45] S. Sundaraganesan, H. Saleem and S. Mohan, Ind J Phys., 78(6), 489-494, 2004.

[46] S. Gunasekaran, S. Kumaresan, R. Arunbalaji and S. Srinivasan, J Chem Sci., Vol 120, No.3, 315-324, 2008.

[47] M. K. Sharma & K. C. Medhi, Indian J Phys., 66B (1), 59, 1992.

[48] N. B. Dudley, H.Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, Tata McGraw-Hill, UK 1988.

[49] B. S. Yadav, I. Ali, P. Kumar and P. Yadav, Ind J Pure & Appl Phys., Vol. 45, 979-983, 2007.

[50] A. J. Abkowicz-Bienko, Z. Latajka, D. C. Bienko and D. Michalska, Chem Phys., 250, 123, 1999.