Some Bounds of Rainbow Edge Domination in Graphs

G. SURESH SINGH
HADIS NOZARPOUR
Department of Mathematics
University of Kerala, Kerala, India

Abstract

: The edge dominating set of a graph $G=(V, E)$ is the subset $F \subseteq$ E such that each edge in E is either in F or is adjacent to an edge in F. The maximum degree of an edge in G is defined as $\Delta^{\prime}(G)$ and diameter of a graph is the length of shortest path between the most distanced nodes. In this paper we try to find some bounds for the rainbow edge domination number of a graph in terms of maximum edge degree $\Delta^{\prime}(G)$ and the diameter of the graph.

Key words: Diameter, 2rainbow edge domination, 2rainbow edge domatic, k -rainbow edge dominating family

1. Introduction

The dominating set of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is the subset $\mathrm{S} \subseteq V$ such that every vertex $v \in \mathrm{~V}$ is either an element of S or is adjacent to some element of S . A dominating set S is a minimal dominating set if no proper subset $S^{\prime} \subset S$ is a dominating set. The cardinality of minimal dominating set of G is called domination number of G which is denoted by $\gamma(G)$.The open neighborhood $\mathrm{N}(v)$ of $v \in \mathrm{~V}(\mathrm{G})$ is the set of vertices adjacent to v and the set $\mathrm{N}[v]=\mathrm{N}(v) \cup\{v\}$ is the closed neighborhood of v. For any number " n ", $[\mathrm{n}\rceil$ denotes the smallest integer not less
than " n " and $\lfloor n\rfloor$ denotes the greatest integer not greater than " n ".

An edge " e " of a graph G is said to be incident with the vertex v if v is an end vertex of e. Two edges e and f which incident with a common vertex v are said to be adjacent. A subset $\mathrm{F} \subseteq \mathrm{E}$ is an edge dominating set if each edge in E is either in F or is adjacent to an edge in F. An edge dominating set F is called minimal if no proper subset F^{\prime} of F is an edge dominating set.

The edge domination number $\gamma^{\prime}(G)$ is the cardinality of minimal edge dominating set. The open neighborhood of an edge $e \in \mathrm{E}$ is denoted as $\mathrm{N}(e)$ and it is the set of all edges adjacent to e in G, further $\mathrm{N}[e]=\mathrm{N}(e) \cup\{e\}$ is the closed neighborhood of " e " in G. For all terminology and notations related to graph theory not given here we follow [7]. The motivation of domination parameters are obtained from [7] and [8]. This work is mainly based on [2], [3], [5] and [6].

2. 2-Rainbow edge domination function

Let $G=(V, E)$ be a graph and let g be a function that assigns to each edge a set of colors chosen from the power set of $\{1,2\}$ i.e., $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$. If for each edge $e \in \mathrm{E}(\mathrm{G})$ such that $\mathrm{g}(e)=$ ϕ, we have $\mathrm{U}_{f \in N(e)} g(f)=\{1,2\}$, then g is called 2-Rainbow edge domination function(2REDF) and the weight $\mathrm{w}(\mathrm{g})$ of a function is defined as $\mathrm{w}(\mathrm{g})=\sum_{f \in E(G)}|g(f)|$.

The minimum weight of 2 REDF is called 2 -rainbow edge domination number (2REDN) of G denoted by $\quad \gamma_{r 2}^{\prime}(\mathrm{G})$.

3. Roman domination function

A Roman dominating function on a graph $G=(V, E)$ is a function $f: \mathrm{V} \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of Roman dominating function is the value $f(v)=\sum_{u \in V}(f(u))$. The minimum weight of a Roman
dominating function on a graph G is called the Roman domination number of G and denote by $\gamma^{\prime}{ }_{R}(\mathrm{G})$.

Theorem 3.1 For any graph G, $\gamma^{\prime}(\mathrm{G}) \leq \gamma^{\prime}{ }_{r 2}(\mathrm{G}) \leq \gamma^{\prime}{ }_{R}(\mathrm{G}) \leq$ $2 \gamma^{\prime}(\mathrm{G})$.
Proof From the theorem in [1] we have $\gamma^{\prime}(\mathrm{G}) \leq \gamma^{\prime}{ }_{R}(\mathrm{G}) \leq 2 \gamma^{\prime}(\mathrm{G})$ so to prove the theorem we need to prove first $\gamma^{\prime}{ }_{r 2}(\mathrm{G}) \leq \gamma^{\prime}{ }_{R}(\mathrm{G})$ and also $\gamma^{\prime}(\mathrm{G}) \leq \gamma^{\prime}{ }_{r 2}(\mathrm{G})$.
Let $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{0,1,2\}$ be Roman edge dominating function with minimum weight it means $\mathrm{W}(f)=\gamma_{R}^{\prime}(\mathrm{G})$. Now we can define a function $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ as the following ;
$\mathrm{g}(e)=\left\{\begin{array}{lll}\varnothing & \text { if } & e \in E_{0} \\ \{1\} \text { or }\{2\} & \text { if } & e \in E_{1} \\ \{1,2\} & \text { if } & e \in \mathrm{E}_{2}\end{array}\right.$
We assign \emptyset for any edge $e \in E_{0}$ it means $\mathrm{g}(e)=\varnothing$ when $e \in E_{0}$ and $e \in E_{0}$ means $f(e)=0$ and since $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{0,1,2\}$ is γ_{R}^{\prime}-function, then any edge $e \in E_{0}$ must be adjacent to edge h $\in \mathrm{E}_{2}$, i.e., $f(h)=2$ and in the function $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$, if $h \in E_{0}$ then $\mathrm{g}(h)=\{1,2\}$. Hence $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ is a 2 -rainbow edge domination function in G with the weight $\mathrm{W}(\mathrm{g})$ that means $\gamma_{r 2}^{\prime}(\mathrm{G}) \leq \mathrm{W}(\mathrm{g})$

But by the definition of the function $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$, we can get that
$\mathrm{W}(\mathrm{g})=\left|E_{1}\right|+\left|E_{2}\right|=\mathrm{W}(f)=\gamma_{R}^{\prime}(\mathrm{G})$
By (1) and (2) we get
$\gamma_{r 2}^{\prime}(\mathrm{G}) \leq \gamma^{\prime}{ }_{R}(\mathrm{G})$

For the lower bound, let $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ be a 2 -rainbow dominating function with the minimum weight i.e., $\mathrm{W}(\mathrm{g})=$ $\gamma_{r 2}^{\prime}(\mathrm{G})$.
By the function g: $\mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ the edges of G can be partition to four sets as the following;

```
\(\mathrm{E}_{0}=e_{i} \in E(G) ; g\left(e_{i}\right)=\varnothing, i=\)
\(1,2, \ldots, n\}\)
\({ }^{1} \mathrm{E}_{1}=\left\{e_{i} \in E(G) ; g\left(e_{i}\right)=\{1\}, i=1,2, \ldots, n\right\}\)
\({ }^{2} \mathrm{E}_{1}=\left\{e_{i} \in E(G) ; g\left(e_{i}\right)=\{2\}, i=1,2, \ldots, n\right\}\)
\(\mathrm{E}_{2}=\left\{e_{i} \in E(G) ; g\left(e_{i}\right)=\{1,2\}, i=1,2, \ldots, n\right\}\)
```

For the edge domination we can define the edge domination in G as following;
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. An edge dominating function of G is a function $f: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$ such that for any edge $e \in \mathrm{E}(\mathrm{G})$ for which $f(e)=0$ is adjacent to at least one edge h for which $f(h)=1$. The weight of an edge dominating function is the value $f(\mathrm{E})=\sum_{e \in E(G)} f(e)$. The edge domination number of G denoted by $\gamma^{\prime}(\mathrm{G})$ is the minimum weight of an edge dominating function in G.
Now let $f: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$ be define as

$$
f(\mathrm{e})=\left\{\begin{array}{lr}
0 & \text { if } \quad e \in E_{0} \\
1 & \text { otherwise }
\end{array}\right.
$$

It is obvious that $f: \mathrm{E}(\mathrm{G}) \rightarrow\{0,1\}$ is an edge dominating function in G and
$\mathrm{W}(f)=\left|{ }^{1} \mathrm{E}_{1}\right|+\left|{ }^{2} \mathrm{E}_{1}\right|+\left|\mathrm{E}_{2}\right| \leq\left|{ }^{1} \mathrm{E}_{1}\right|+\left|{ }^{2} \mathrm{E}_{1}\right|+2\left|\mathrm{E}_{2}\right|=\gamma_{r 2}^{\prime}(\mathrm{G})$
Therefore;
$\gamma^{\prime}(\mathrm{G}) \leq W(f) \leq \gamma_{r 2}^{\prime}(G)$
Hence
$\gamma^{\prime}(\mathrm{G}) \leq \gamma^{\prime}{ }_{r 2}(\mathrm{G})$
Hence from (3) and (4) we have

$$
\gamma^{\prime}(\mathrm{G}) \leq \gamma_{r 2}^{\prime}(\mathrm{G}) \leq \gamma_{R}^{\prime}(\mathrm{G}) \leq 2 \gamma^{\prime}(\mathrm{G})
$$

Corollary 3.2 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph, $\gamma^{\prime}{ }_{r 2}(\mathrm{G})=\gamma_{R}^{\prime}(\mathrm{G})=$ $\gamma^{\prime}(\mathrm{G})=1$ if and only if $\mathrm{G} \cong \mathrm{m} K_{2}$ for $\mathrm{m} \geq 1$.
Proof If $\gamma^{\prime}{ }_{r 2}(\mathrm{G})=\gamma^{\prime}{ }_{R}(\mathrm{G})=\gamma^{\prime}(\mathrm{G})=1$, clearly if $\gamma_{R}^{\prime}(\mathrm{G})=1$ then $V_{2}=\emptyset$ and $V_{0}=\varnothing$ so $\quad\left|V_{1}\right|=1$ that means there is one edge on G, that means there is only one case for $\gamma_{R}^{\prime}(G)=1$ hence $\gamma^{\prime}{ }_{R}(\mathrm{G})=1$ if and only if $\mathrm{G} \cong \mathrm{m} K_{2}$. Conversely it is clear that if $\mathrm{G} \cong \mathrm{m} K_{2}$ then $\gamma_{r 2}^{\prime}(\mathrm{G})=\gamma_{R}^{\prime}(\mathrm{G})=$ $\gamma^{\prime}(\mathrm{G})=1$.

We know that $\gamma^{\prime}{ }^{2} 2(\mathrm{G})=\gamma_{\mathrm{r} 2}(\mathrm{~L}(\mathrm{G}))$ for any graph G where $\mathrm{L}(\mathrm{G})$ is the line graph of G . To study when $\gamma_{r 2}^{\prime}(\mathrm{G})=\gamma_{\mathrm{r} 2}(\mathrm{G})$ we have two cases either $G \cong L(G)$ and in this case $G \cong k C_{n}$ for any positive integers k and n .
Observation 3.3 For any graph $\mathrm{G} \cong \mathrm{k} C_{n}$ we have $\gamma^{\prime}{ }_{r 2}(\mathrm{G})=$ $\gamma_{\mathrm{r} 2}(\mathrm{G})$.
Proposition 3.4 For any path P_{n} where $n \geq 2, \gamma_{r 2}^{\prime}(\mathrm{G})=\gamma^{\prime}{ }_{R}$ (G) if and only if $n=2,3,5$ or 7 i.e., $\mathrm{G} \cong P_{2}, P_{3}, P_{5}$ or P_{7}.

Proof Let $\mathrm{G} \cong P_{n}$ then we have $\gamma_{R}^{\prime}(\mathrm{G})=\left\lfloor\frac{2 n}{3}\right\rfloor$. From theorem

$$
\gamma_{r 2}^{\prime}\left(P_{n}\right)=\left\{\begin{array}{lll}
\frac{n}{2} & \text { if } & n \text { is even } \\
\frac{n+1}{2} & \text { if } & n \text { is odd }
\end{array}\right.
$$

we can write $\left[\frac{2 n}{3}\right\rfloor$ as the following;
γ_{R}^{\prime}
$\left\{\begin{array}{lll}\frac{2 n}{3} & \left(P_{n}\right) & = \\ \left\{\begin{array}{l}2 n-2 \\ 3\end{array}\right. & \text { if } & n \equiv 0(\bmod 3) \\ \frac{2 n-1}{3} & \text { if } & n \equiv 1(\bmod 3) \\ & n \equiv 2(\bmod 3)\end{array}\right.$

Case 1 If $\gamma_{r 2}^{\prime}(\mathrm{G})=\frac{n}{2}$ then only n should be equal to 2 to get $\gamma_{r 2}^{\prime}(\mathrm{G})=\frac{n}{2}=\frac{2 n-1}{3}=\gamma_{R}^{\prime}(\mathrm{G})$ hence $\mathrm{G} \cong P_{2}$.
Case $2 \gamma_{r 2}^{\prime}(\mathrm{G})=\frac{n+1}{2}$ then
either $\frac{n+1}{2}=\frac{2 n}{3}$ then $n=3$
or $\frac{n+1}{2}=\frac{2 n-2}{3}$ then $\mathrm{n}=7$
or $\frac{n+1}{2}=\frac{2 n-1}{3}$ then $\mathrm{n}=5$
Hence $\mathrm{G} \cong P_{3}$ or P_{5} or P_{7}. conversely, if $\mathrm{G} \cong P_{2}$ or P_{3} or P_{5} or P_{7} then $\gamma_{r 2}^{\prime}(\mathrm{G})=\gamma_{\mathrm{r} 2}(\mathrm{G})$.

Proposition 3.5 for any path P_{n} with odd number of vertices $\gamma^{\prime}{ }_{r 2}\left(P_{n}\right)=\gamma_{R}^{\prime}\left(P_{n}\right)$.
Proof By using theorems

$$
\gamma_{r 2}^{\prime}\left(P_{n}\right)=\left\{\begin{array}{lll}
\frac{n}{2} & \text { if } & n \text { is even } \\
\frac{n+1}{2} & \text { if } & n \text { is odd }
\end{array}\right.
$$

And $\gamma_{r 2}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor+1$
We can write
$\gamma_{r 2}\left(P_{n}\right)=\left\{\begin{array}{lll}\frac{n+2}{2} & \text { if } & n \text { is even } \\ \frac{n+1}{2} & \text { if } & n \text { is odd }\end{array}\right.$
Then $\frac{n+2}{2}$ cannot be equal to $\frac{n}{2}$. Hence $\quad \gamma_{r 2}^{\prime}\left(P_{n}\right)=\gamma_{r 2}\left(P_{n}\right)=\frac{n+1}{2}$ if n is odd.
Theorem 3.6 Let G be a connected graph with q edges and contains one edge e_{0} with degree $\operatorname{deg}\left(e_{0}\right)=q-\gamma^{\prime}(\mathrm{G})$. Then $\gamma^{\prime}{ }_{2}(\mathrm{G})$ either is equal to $\gamma^{\prime}(\mathrm{G})+1$ or $\gamma^{\prime}(\mathrm{G})$.
Proof Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be connected graph with q edges, let $e_{0} \in \mathrm{E}(\mathrm{G})$ such that $\operatorname{deg}\left(e_{0}\right)=q-\gamma^{\prime}(\mathrm{G})$. Now let $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{0,1\}$ defined as following;
$f(e)=\left\{\begin{array}{ccc}\{1,2\} & \text { if } & e=e_{0} \\ \{1\} \operatorname{or}\{2\} & \text { if } & e \in \mathrm{E}-\mathrm{N}\left[e_{0}\right] \\ \emptyset & \text { if } & e \in \mathrm{~N}\left[e_{0}\right]\end{array}\right.$
clearly $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ is a 2 -Rainbow edge dominating function in G and the weight of f is $\mathrm{W}(f)=2+q-\left(q-\gamma^{\prime}(\mathrm{G})\right.$
$+1) \quad=\quad \gamma^{\prime}(\mathrm{G}) \quad+1$
Therefore
$\gamma_{r 2}^{\prime}(\mathrm{G}) \leq \gamma^{\prime}(\mathrm{G})+1$
And by theorem 3.1 we have

$$
\gamma^{\prime}(\mathrm{G}) \leq \gamma^{\prime}{ }_{r 2}(\mathrm{G})
$$

By (1) and (2) $\gamma_{r 2}^{\prime}(\mathrm{G})$ has two values either $\gamma^{\prime}(\mathrm{G})$ or $\gamma^{\prime}(\mathrm{G})+1$.

Theorem 3.7 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and let $f: \mathrm{E}(\mathrm{G}) \rightarrow$ $\mathcal{P}\{1,2\}$ be its 2 -Rainbow edge domination function such that $\left.\right|^{1} \mathrm{E}_{1} \mid=0$. Then $\left\langle{ }^{2} E_{1}\right\rangle \cong \mathrm{sK}_{2} \cup \mathrm{tP}_{3}$ for some integers $\mathrm{s}, \mathrm{t} \geq 0$.

Proof Let $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ be a 2 -Rainbow edge dominating function with the minimum weight in G that means $\mathrm{W}(f)=$ $\gamma_{r 2}^{\prime}(\mathrm{G})$ and this function has the property $\left.\right|^{1} \mathrm{E}_{1} \mid=0$. Now to prove that $\left\langle{ }^{2} E_{1}\right\rangle \cong \mathrm{sK}_{2} \cup \mathrm{tP}_{3}$ it is enough to prove that
no edge in ${ }^{2}$ 团 E_{1} has degree more than two. Suppose there is some edge in ${ }^{2}$ 国 E_{1} of degree more than two then let e_{1} and e_{2} and e_{3} be the sequence edge of P_{4} in $\left\langle{ }^{2} E_{1}\right\rangle$ or the edges of $K_{1,3}$ in $\left\langle{ }^{2} E_{1}\right\rangle$. Clearly $f\left(e_{1}\right)=f\left(e_{2}\right)=f\left(e_{3}\right)=2$. Let us define the function $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ as

$$
f(\mathrm{e})=\left\{\begin{array}{llr}
\emptyset & \text { if } & e \in\left\{e_{1}, e_{3}\right\} \\
\{1,2\} & \text { if } & e_{1}=e_{2} \\
f(e) & & \text { otherwise }
\end{array}\right.
$$

It is easy to see that \dot{f} is 2 -Rainbow edge dominating function in G and $\mathrm{W}(f)=\mathrm{W}(f)-1$ hence $\mathrm{W}(f) \leq \mathrm{W}(f)$ this is contradiction for the definition of 2 -Rainbow edge domination in graph. Therefore there is no edge of degree more than two in $\left\langle{ }^{2} E_{1}\right\rangle$ that means either $\left\langle{ }^{2} E_{1}\right\rangle$ is P_{3} or K_{2} or disjoint union of P_{3} and K_{2}. Hence $\left\langle{ }^{2} E_{1}\right\rangle \cong \mathrm{sK}_{2} \cup \mathrm{tP}_{3}$.

Note similarly in theorem if $\left.\right|^{2} \mathrm{E}_{1} \mid=0$ then we can prove in the same way that $\left\langle{ }^{1} E_{1}\right\rangle \cong \mathrm{sK}_{2} \cup \mathrm{tP}_{3}$.

Proposition 3.8 For any graph G if there exists 2 -Rainbow edge dominating function $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ such that either $\left.\right|^{1} \mathrm{E}_{1} \mid$ $=0$ or $\left.\right|^{2} \mathrm{E}_{1} \mid=0$ then $\gamma_{r 2}^{\prime}(\mathrm{G})=\gamma^{\prime}{ }_{R}(\mathrm{G})$.

Proof Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and let $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ be a 2 -Rainbow edge dominating function in G and without lose of generality let $\left|{ }^{1} \mathrm{E}_{1}\right|=0$. Then for any edge e in G with $f(e)=\emptyset$ there existat least one edge é adjacent to e such that $f\left(e^{e}\right)=$ $\{1,2\}$.

Now let g: $\mathrm{E}(\mathrm{G}) \rightarrow\{0,1,2\}$ defined as
$\mathrm{g}(e)=\left\{\begin{array}{llr}0 & \text { if } & e \in \mathrm{E}_{0} \\ 1 & \text { if } & e \in{ }^{2} E_{1} \\ 2 & \text { if } & e \in \mathrm{E}_{2}\end{array}\right.$

Then clearly g is Roman edge dominating function and $\mathrm{W}(\mathrm{g})=$ $\left.\right|^{2} \mathrm{E}_{1}|+2| \mathrm{E}_{2} \mid$
Therefore
$\gamma_{R}^{\prime}(\mathrm{G}) \leq\left.\right|^{2} \mathrm{E}_{1}|+2| \mathrm{E}_{2} \mid=\mathrm{W}(f)=\gamma_{r 2}^{\prime}(\mathrm{G})$
Hence

$$
\begin{equation*}
\gamma_{R}^{\prime}(\mathrm{G}) \leq \gamma_{r 2}^{\prime}(\mathrm{G}) \tag{1}
\end{equation*}
$$

Also by the theorem 3.1, we have
$\gamma_{r 2}^{\prime}(\mathrm{G}) \leq \gamma^{\prime}{ }_{R}(\mathrm{G})$
From (1) and (2) we have $\gamma_{r 2}^{\prime}(\mathrm{G})=\gamma_{R}^{\prime} \quad$ (G). similarly if $\left.\right|^{2} \mathrm{E}_{1} \mid=0$ we can prove in the same way that $\gamma^{\prime}{ }_{r 2}(\mathrm{G})$ $=\gamma^{\prime}{ }_{R}(\mathrm{G})$.
Theorem 3.9 Let G be a graph and let $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ is 2Rainbow edge dominating function in G . Then
i) There exist no common end vertex between the edges in E_{2} the edges in ${ }^{1} \mathrm{E}_{1} \cup{ }^{2} \mathrm{E}_{1}$.
ii) If one of ${ }^{1} \mathrm{E}_{1}$ or ${ }^{2} \mathrm{E}_{1}$ be equal to zero then E_{2} is minimum edge dominating set of induced subgraph $\left\langle E_{2} \cup E_{0}\right\rangle$.
iii) Each edge in the set E_{0} is adjacent to at most two edges of ${ }^{1} \mathrm{E}_{1} \cup{ }^{2} \mathrm{E}_{1}$.

Proof

i) Let e and $e ́$ be any two edges in G such that $f(e)=\{1,2\}$ and f (é) $=\{1\}$ or $\{2\}$, let $e=u v$ and $\dot{e}=v w$ that means $e \in E_{2}$ and $e ́ \in E_{1} \cup E_{2}$ and e and $e ́$ has common vertex v. Now we can define the function $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ as the following;
$f^{\prime}(h)= \begin{cases}\varnothing & \text { if } h=e ́ \\ f(h) & \text { otherwise }\end{cases}$
It is easy to see that $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ is a 2-Rainbow edge dominating function in G and $\mathrm{W}(f)=\mathrm{W}(f)-1$ and this is contradiction with the fact that $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ is 2 -Rainbow edge dominating function. Hence there is no common end vertex between any edge in E_{2} and any edge in ${ }^{1} \mathrm{E}_{1} \cup{ }^{2} \mathrm{E}_{1}$.
ii) Let D be a dominating set of induced subgraph $\left\langle E_{2} \cup E_{0}\right\rangle$ and let $|D|<\left|E_{2}\right|$ and let $\left|{ }^{1} \mathrm{E}_{1}\right|=0$. We can define the function f : $\mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ as
$g(h)=\left\{\begin{array}{llr}\{1,2\} & \text { if } & h \in \mathrm{D} \\ \{2\} & \text { if } & h \in{ }^{2} E_{1} \\ \emptyset & \text { if } & h \in\left(E_{2} \cup E_{0}\right)-D\end{array}\right.$
Then obviously g is 2-Rainbow edge dominating function in G and $\mathrm{W}(\mathrm{g})=\left.\right|^{1} \mathrm{E}_{1}|+2| D\left|<\left|E_{1}\right|+2\right| \mathrm{E}_{2} \mid=\mathrm{W}(f)=\gamma_{r 2}^{\prime}(\mathrm{G})$ and this is contradiction.
Hence $\left|\mathrm{E}_{2}\right|$ is the minimum dominating set of the induced subgraph $\left\langle E_{2} \cup E_{0}\right\rangle$.
iii) Suppose that $e_{0} \in E_{0}$ is adjacent to three edges in ${ }^{1} \mathrm{E}_{1} \cup{ }^{2} \mathrm{E}_{1}$ (say) e_{1}, e_{2} and e_{3}. let $\mathrm{g}: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ defined as
$g(e)=\left\{\begin{array}{llr}\{1,2\} & \text { if } & e \in E_{2} \cup\left\{e_{0}\right\} \\ \{1\} \text { or }\{2\} & \text { if } & e \in\left({ }^{1} E_{1} \cup{ }^{2} E_{2}\right)-\left\{e_{1}, e_{2}, e_{3}\right\} \\ \emptyset & \text { if } & e \in E_{0} \cup\left\{e_{1}, e_{2}, e_{3}\right\}-\left\{e_{0}\right\}\end{array}\right.$
clearly any edge assign to \emptyset by g is adjacent to edge h such that $\mathrm{g}(h)=\{1,2\}$ or adjacent to two edges $h^{\prime}, h^{\prime \prime}$ such that $\mathrm{g}\left(h^{\prime}\right)=\{1\}$ and $\mathrm{g}\left(h^{\prime \prime}\right)=\{2\}$. Therefore $g: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ is 2-Rainbow edge dominating function in G and $W(g)=\left|{ }^{1} \mathrm{E}_{1}\right|+\left|{ }^{2} \mathrm{E}_{1}\right|-3+2\left|\mathrm{E}_{2}\right|+2$ $=\begin{array}{llllll} & { }^{1} \mathrm{E}_{1} \mid & + & { }^{2} \mathrm{E}_{1} \mid & +2 & \left|\mathrm{E}_{2}\right|\end{array}-1$ $<\left.\right|^{1} \mathrm{E}_{1}\left|+{ }^{2} \mathrm{E}_{1}\right|+2\left|\mathrm{E}_{2}\right|=\mathrm{W}(f \quad)=\gamma_{r 2}^{\prime}(\mathrm{G})$ which is contradiction. Hence each edge in E_{0} is adjacent to at most two edges of ${ }^{1} \mathrm{E}_{1} \cup{ }^{2} \mathrm{E}_{1}$.
Proposition 3.10 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with $q \geq 2$ edges and contains at least one edge of degree $q-1$. Then $\gamma^{\prime}(G)=1$ and $\gamma_{r 2}^{\prime}(\mathrm{G})=2$.
Proof Let G be a graph with q edges and let $e_{0} \in E(G)$ such that $\operatorname{deg}\left(e_{0}\right)=q-1$.

It is
clear that e_{0} will dominate all the edges in G therefore $\gamma^{\prime}(\mathrm{G})=$ 1.

Now let $g: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ be a function defined as
$f(e)= \begin{cases}\{1,2\} & \text { if } e=e_{0} \\ \emptyset & \text { otherwise }\end{cases}$
Since $\operatorname{deg}\left(e_{0}\right)=q-1$, then g is 2-Rainbow edge dominating function in G , and $\mathrm{W}(\mathrm{g})=2$.
Hence $\gamma^{\prime}{ }_{r 2}(\mathrm{G}) \leq 2$.
Hence $\gamma^{\prime}{ }_{r 2}(\mathrm{G})=1$ or 2 .
But from theorem $\gamma_{r 2}^{\prime}(\mathrm{G})=1$ if and only if $\mathrm{G} \cong K_{2}$ hence $\gamma_{r 2}^{\prime}(\mathrm{G})$ $=2$.
Proposition 3.11 Let $\mathrm{G} \cong K_{2} \square P_{n}$ then $\gamma_{r 2}^{\prime}(\mathrm{G})=n$.
Proof Let $\mathrm{G} \cong K_{2} \square P_{n}$ as the following figure
$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{n-1} \quad v_{n}$

$\begin{array}{llllll}u_{1} & u_{2} & u_{3} & u_{4} & u_{n-1} & u_{n}\end{array}$
We define the function $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$ as;

if $f: \mathrm{E}(\mathrm{G}) \rightarrow \mathcal{P}\{1,2\}$, clearly every edge e with $f(e)=\varnothing$ has two neighborhood edges $\quad e^{\prime}$ and $e^{\prime \prime}$ such that $f\left(e^{\prime}\right)=\{1\}$ and $f\left(e^{\prime \prime}\right)=\{2\}$. Therefore f is 2 -Rainbow edge dominating function and $\mathrm{W}(f)=n$. Thus $\gamma^{\prime}{ }_{r 2}(\mathrm{G}) \leq n$
The number of edges in $K_{2} \square P_{n}$ is $q=2(n-1)+n=3 n-1$ and from the theorem
$\gamma^{\prime}{ }_{r 2}(\mathrm{G}) \geq\left\lceil\frac{2 q}{\Delta^{\prime}+2}\right\rceil$ and $\Delta^{\prime}(G)=4$ in $K_{2} \square P_{n}$ we have
$\gamma_{r 2}^{\prime}(\mathrm{G}) \geq\left\lceil\frac{2(3 n-1)}{6}\right\rceil=\left\lceil\frac{3 n-1}{6}\right\rceil=n$
Thus $\gamma^{\prime}{ }_{r 2}(\mathrm{G}) \geq n(2)$
From (1) and (2) we have $\gamma^{\prime}{ }_{r 2}(\mathrm{G})=n$.

References

[1] B. Brešar, M .A .Henning, D. F. Rall, Rainbow domination in graphs,Taiwan journal of Mathematics 12(2008) 213-225.
[2] B. Brešar .T . K . Šumenjak, on the 2 -rainbow domination in graphs, Discrete Applied Mathematics 155 (2007) 2394-2400.
[3] G. J .Chang, J, Wu, X. Zhu, Rainbow domination on trees, Discrete Applied Mathematics 158 (2010) 8-12.
[4] G. Suresh Singh, Graph Theory, PHI Learning Private Limited, New Delhi, 2010.
[5] G. Suresh Singh and Hadis Nozarpour, Some Bounds of Rainbow Edge Domination in Graphs, AMERICAN RESEARCH THOUGHTS, 1(11),(2015),2645-2653.
[6] G. Suresh Singh and Hadis Nozarpour, Some Results on Domination Parameters in Graphs- A Special Reference to 2Rainbow Edge Domination, EUROPEAN ACADEMIC RESEARCH,3(6),(2015),6652-6661.
[7] T. W. Haynes, S.T. Hedetniemi, P.J. slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York,1998.
[8] T.W. Haynes, S.T. Hedetniemi,P.J. slater (eds).Domination in graph: Advanced Topic, Marcel Dekker,New York,1998.

