

Impact Factor: 3.4546 (UIF) DRJI Value: 5.9 (B+)

Some Bounds of Rainbow Edge Domination in Graphs

G. SURESH SINGH HADIS NOZARPOUR Department of Mathematics University of Kerala, Kerala, India

Abstract:

The edge dominating set of a graph G = (V, E) is the subset $F \subseteq$ E such that each edge in E is either in F or is adjacent to an edge in F. The maximum degree of an edge in G is defined as $\Delta'(G)$ and diameter of a graph is the length of shortest path between the most distanced nodes. In this paper we try to find some bounds for the rainbow edge domination number of a graph in terms of maximum edge degree $\Delta'(G)$ and the diameter of the graph.

Key words: Diameter, 2rainbow edge domination, 2rainbow edge domatic, k-rainbow edge dominating family

1. Introduction

The dominating set of a graph G = (V, E) is the subset $S \subseteq V$ such that every vertex $v \in V$ is either an element of S or is adjacent to some element of S. A dominating set S is a minimal dominating set if no proper subset $S' \subset S$ is a dominating set. The cardinality of minimal dominating set of G is called domination number of G which is denoted by $\gamma(G)$. The open neighborhood N(v) of $v \in V(G)$ is the set of vertices adjacent to v and the set $N[v]=N(v)\cup \{v\}$ is the closed neighborhood of v. For any number "n", [n] denotes the smallest integer not less than "n" and [n] denotes the greatest integer not greater than "n".

An edge "e" of a graph G is said to be incident with the vertex v if v is an end vertex of e. Two edges e and f which incident with a common vertex v are said to be adjacent. A subset $F \subseteq E$ is an edge dominating set if each edge in E is in \mathbf{F} adjacent either or is to an edge in F. An edge dominating set F is called minimal if no proper subset F' of F is an edge dominating set.

The edge domination number $\gamma'(G)$ is the cardinality of minimal edge dominating set. The open neighborhood of an edge $e \in E$ is denoted as N(e) and it is the set of all edges adjacent to e in G, further N $[e]=N(e)\cup\{e\}$ is the closed neighborhood of "e" in G. For all terminology and notations related to graph theory not given here we follow [7]. The motivation of domination parameters are obtained from [7] and [8]. This work is mainly based on [2], [3], [5] and [6].

2. 2-Rainbow edge domination function

Let G=(V,E) be a graph and let g be a function that assigns to each edge a set of colors chosen from the power set of {1,2} i.e., g:E(G) $\rightarrow \mathcal{P}$ {1,2}. If for each edge $e \in E(G)$ such that $g(e) = \phi$,we have $\bigcup_{f \in N(e)} g(f)$ ={1,2},then g is called 2-Rainbow edge domination function(2REDF) and the weight w(g) of a function is defined as w(g) = $\sum_{f \in E(G)} |g(f)|$.

The minimum weight of 2REDF is called 2-rainbow edge domination number (2REDN) of G denoted by γ'_{r2} (G).

3. Roman domination function

A Roman dominating function on a graph G = (V,E) is a function $f: V \to \{0, 1, 2\}$ satisfying the condition that every vertex *u* for which f(u) = 0 is adjacent to at least one vertex *v* for which f(v) = 2. The weight of Roman dominating function is the value $f(v) = \sum_{u \in V} (f(u))$. The minimum weight of a Roman

dominating function on a graph G is called the Roman domination number of G and denote by γ'_R (G).

Theorem 3.1 For any graph G, $\gamma'(G) \leq \gamma'_{r_2}(G) \leq \gamma'_R(G) \leq 2\gamma'(G)$.

Proof From the theorem in [1] we have $\gamma'(G) \leq \gamma'_R(G) \leq 2\gamma'(G)$ so to prove the theorem we need to prove first $\gamma'_{r2}(G) \leq \gamma'_R(G)$ and also $\gamma'(G) \leq \gamma'_{r2}(G)$.

Let $f : E(G) \to \mathcal{P}\{0,1,2\}$ be Roman edge dominating function with minimum weight it means W(f) = γ'_R (G). Now we can define a function g : E(G) $\to \mathcal{P}\{1,2\}$ as the following ;

$$\mathbf{g}(e) = \begin{cases} \emptyset & \text{if} \qquad e \in E_0\\ \{1\}or\{2\} & \text{if} \qquad e \in E_1\\ \{1,2\} & \text{if} \qquad e \in E_2 \end{cases}$$

We assign \emptyset for any edge $e \in E_0$ it means $g(e) = \emptyset$ when $e \in E_0$ and $e \in E_0$ means f(e) = 0 and since $f : E(G) \to \mathcal{P}\{0,1,2\}$ is γ'_R -function, then any edge $e \in E_0$ must be adjacent to edge $h \in E_2$, i.e., f(h) = 2 and in the function $g : E(G) \to \mathcal{P}\{1,2\}$, if $h \in E_0$ then $g(h) = \{1,2\}$. Hence $g : E(G) \to \mathcal{P}\{1,2\}$ is a 2-rainbow edge domination function in G with the weight W(g) that means $\gamma'_{r2}(G) \leq W(g)$ (1)

But by the definition of the function $g : E(G) \rightarrow \mathcal{P}\{1,2\}$, we can get that $W(g) = |E_1| + |E_2| = W(f) = \gamma'_R(G) \qquad (2)$ By (1) and (2) we get $\gamma'_{r2}(G) \leq \gamma'_R(G) \qquad (3)$

For the lower bound, let $g : E(G) \to \mathcal{P}\{1,2\}$ be a 2-rainbow dominating function with the minimum weight i.e., $W(g) = \gamma'_{r2}(G)$.

By the function g: $E(G) \rightarrow \mathcal{P}\{1,2\}$ the edges of G can be partition to four sets as the following;

G.Suresh Singh, Hadis Nozarpour- Some Bounds of Rainbow Edge Domination in Graphs

$$\begin{split} & E_0 = e_i \in E(G); \ g(e_i) = \emptyset \ , i = \\ & 1,2, \dots, n \rbrace \\ {}^{1}E_1 = \{ \ e_i \in E(G); \ g(e_i) = \{1\} \ , i = 1,2, \dots, n \} \\ {}^{2}E_1 = \{ e_i \in E(G); \ g(e_i) = \{2\} \ , i = 1,2, \dots, n \} \\ & E_2 = \{ \ e_i \in E(G); \ g(e_i) = \{1,2\} \ , i = 1,2, \dots, n \} \\ & \text{For the edge domination we can define the } \end{split}$$

For the edge domination we can define the edge domination in G as following;

Let G = (V, E) be a graph. An edge dominating function of G is a function $f : E(G) \rightarrow \{0,1\}$ such that for any edge $e \in E(G)$ for which f(e) = 0 is adjacent to at least one edge h for which f(h) = 1. The weight of an edge dominating function is the value $f(E) = \sum_{e \in E(G)} f(e)$. The edge domination number of G denoted by $\gamma'(G)$ is the minimum weight of an edge dominating function in G.

Now let $f : E(G) \rightarrow \{0,1\}$ be define as

$$f(\mathbf{e}) = \begin{cases} 0 & if \quad e \in E_0 \\ 1 & otherwise \end{cases}$$

It is obvious that $f : \mathrm{E}(\mathrm{G}) \to \{0,1\}$ is an edge dominating function in G and

 $W(f) = |{}^{1}E_{1}| + |{}^{2}E_{1}| + |E_{2}| \le |{}^{1}E_{1}| + |{}^{2}E_{1}| + 2 |E_{2}| = \gamma'_{r2}(G)$ Therefore; $\gamma'(G) \le W(f) \le \gamma'_{r2}(G)$ Hence $\gamma'(G) \le \gamma'_{r2}(G) \qquad (4)$ Hence from (3) and (4) we have $\gamma'(G) \le \gamma'_{r2}(G) \le \gamma'_{R}(G) \le 2\gamma'(G).$ **Corollary 3.2** Let G = (V,E) be a graph, $\gamma'_{r2}(G) = \gamma'_{R}(G) = \gamma'_{R}(G) = \gamma'_{R}(G) = \gamma'_{R}(G) = 1$ $\gamma'(G) = 1 \text{ if and only if } G \cong mK_{2} \text{ for } m \ge 1.$ **Proof** If $\gamma'_{r2}(G) = \gamma'_{R}(G) = \gamma'_{R}(G) = 1$ clearly if $\gamma'_{R}(G) = 1$

Proof If $\gamma'_{r2}(G) = \gamma'_R(G) = \gamma'(G) = 1$, clearly if $\gamma'_R(G) = 1$ then $V_2 = \emptyset$ and $V_0 = \emptyset$ so $|V_1| = 1$ that means there is one edge on G, that means there is only one case for $\gamma'_R(G) = 1$ hence $\gamma'_R(G) = 1$ if and only if $G \cong mK_2$. Conversely it is clear that if $G \cong mK_2$ then $\gamma'_{r2}(G) = \gamma'_R(G) = \gamma'_R(G) = \gamma'(G) = 1$. We know that $\gamma'_{r^2}(G) = \gamma_{r^2}(L(G))$ for any graph G where L(G) is the line graph of G. To study when $\gamma'_{r^2}(G) = \gamma_{r^2}(G)$ we have two cases either $G \cong L(G)$ and in this case $G \cong kC_n$ for any positive integers k and n.

Observation 3.3 For any graph $G \cong kC_n$ we have $\gamma'_{r_2}(G) = \gamma_{r_2}(G)$.

Proposition 3.4 For any path P_n where $n \ge 2$, $\gamma'_{r2}(G) = \gamma'_R$ (G) if and only if n = 2,3,5 or 7 i.e., $G \cong P_2$, P_3 , P_5 or P_7 .

Proof Let $G \cong P_n$ then we have $\gamma'_R(G) = \left\lfloor \frac{2n}{3} \right\rfloor$. From theorem

$$\begin{split} \gamma'_{r2}(P_n) &= \begin{cases} \frac{n}{2} & if & n \text{ is even} \\ \frac{n+1}{2} & if & n \text{ is odd} \end{cases} \\ \text{we can write } \left\lfloor \frac{2n}{3} \right\rfloor \text{ as the following;} \\ \gamma'_R & (P_n) &= \left\lfloor \frac{2n}{3} \right\rfloor \\ \begin{cases} \frac{2n}{3} & if & n \equiv 0 \pmod{3} \\ \frac{2n-2}{3} & if & n \equiv 1 \pmod{3} \\ \frac{2n-1}{3} & if & n \equiv 2 \pmod{3} \end{cases} \end{split}$$

Case 1 If $\gamma'_{r2}(G) = \frac{n}{2}$ then only *n* should be equal to 2 to get $\gamma'_{r2}(G) = \frac{n}{2} = \frac{2n-1}{3} = \gamma'_R(G)$ hence $G \cong P_2$.

Case 2 $\gamma'_{r2}(G) = \frac{n+1}{2}$ then either $\frac{n+1}{2} = \frac{2n}{3}$ then n = 3or $\frac{n+1}{2} = \frac{2n-2}{3}$ then n = 7or $\frac{n+1}{2} = \frac{2n-1}{3}$ then n = 5Hence $G \cong P_3$ or P_5 or P_7 . conversely, if $G \cong P_2$ or P_3 or P_5 or P_7 then $\gamma'_{r2}(G) = \gamma_{r2}(G)$. \Box

Proposition 3.5 for any path P_n with odd number of vertices $\gamma'_{r2}(P_n) = \gamma'_R(P_n)$.

Proof By using theorems

$$\gamma'_{r2}(P_n) = \begin{cases} \frac{n}{2} & if & n \text{ is even} \\ \frac{n+1}{2} & if & n \text{ is odd} \end{cases}$$

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 10 / January 2016

G.Suresh Singh, Hadis Nozarpour- Some Bounds of Rainbow Edge Domination in Graphs

And $\gamma_{r2}(P_n) = \left|\frac{n}{2}\right| + 1$ We can write $\gamma_{r2}(P_n) = \begin{cases} \frac{n+2}{2} & if & n \text{ is even} \\ \frac{n+1}{2} & if & n \text{ is odd} \end{cases}$ Then $\frac{n+2}{2}$ cannot be equal to $\frac{n}{2}$. Hence $\gamma'_{r2}(P_n) = \gamma_{r2}(P_n) = \frac{n+1}{2}$ if *n* is odd. **Theorem 3.6** Let G be a connected graph with q edges and contains one edge e_0 with degree $\deg(e_0) = q - \gamma'(G)$. Then $\gamma'_{r2}(G)$ either is equal to $\gamma'(G) + 1$ or $\gamma'(G)$. **Proof** Let G = (V, E) be connected graph with q edges, let such that $\deg(e_0) = q - \gamma'(G).$ $e_0 \in E(G)$ Now let $f: E(G) \rightarrow \mathcal{P}\{0,1\}$ defined as following; $f(e) = \begin{cases} \{1,2\} & \text{if } e = e_0 \\ \{1\}\text{or}\{2\} & \text{if } e \in E - N[e_0] \\ \emptyset & \text{if } e \in N[e_0] \end{cases}$ clearly $f : E(G) \rightarrow \mathcal{P}\{1,2\}$ is a 2-Rainbow edge dominating function in G and the weight of f is W(f) = $2 + q - (q - \gamma'(G))$ $\gamma'(G)$ +1)= +1Therefore $\gamma'_{r2}(G) \leq \gamma'(G) + 1$ (1)And by theorem 3.1 we have $\gamma'(G) \leq \gamma'_{r2}(G)$ (2)

By (1) and (2) $\gamma'_{r2}(G)$ has two values either $\gamma'(G)$ or $\gamma'(G) +1$.

Theorem 3.7 Let G = (V,E) be a graph and let $f : E(G) \rightarrow \mathcal{P}\{1,2\}$ be its 2-Rainbow edge domination function such that $|{}^{1}E_{1}| = 0$. Then $\langle {}^{2}E_{1} \rangle \cong sK_{2} \cup tP_{3}$ for some integers $s,t \ge 0$.

Proof Let $f: E(G) \to \mathcal{P}\{1,2\}$ be a 2-Rainbow edge dominating function with the minimum weight in G that means $W(f) = \gamma'_{r2}(G)$ and this function has the property $|{}^{1}E_{1}| = 0$. Now to prove that $\langle {}^{2}E_{1} \rangle \cong sK_{2} \cup tP_{3}$ it is enough to prove that EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 10 / January 2016 no edge in ${}^2 \boxtimes E_1$ has degree more than two. Suppose there is some edge in ${}^2 \boxtimes E_1$ of degree more than two then let e_1 and e_2 and e_3 be the sequence edge of P_4 in $\langle {}^2 E_1 \rangle$ or the edges of $K_{1,3}$ in $\langle {}^2 E_1 \rangle$. Clearly $f(e_1) = f(e_2) = f(e_3) = 2$. Let us define the function $\hat{f} : E(G) \to \mathcal{P}\{1,2\}$ as

$$f(\mathbf{e}) = \begin{cases} \emptyset & \text{if} \quad e \in \{e_1, e_3\} \\ \{1, 2\} & \text{if} \quad e_1 = e_2 \\ f(e) & \text{otherwise} \end{cases}$$

It is easy to see that \hat{f} is 2-Rainbow edge dominating function in G and W(\hat{f}) = W(f) – 1 hence W(\hat{f}) \leq W(f) this is contradiction for the definition of 2-Rainbow edge domination in graph. Therefore there is no edge of degree more than two in $\langle {}^{2}E_{1} \rangle$ that means either $\langle {}^{2}E_{1} \rangle$ is P₃ or K₂ or disjoint union of P₃ and K₂. Hence $\langle {}^{1}E_{1} \rangle \cong$ sK₂ \cup tP₃.

Note similarly in theorem if $|{}^{2}E_{1}| = 0$ then we can prove in the same way that $\langle {}^{1}E_{1} \rangle \cong sK_{2} \cup tP_{3}$.

Proposition 3.8 For any graph G if there exists 2-Rainbow edge dominating function $f: E(G) \rightarrow \mathcal{P}\{1,2\}$ such that either $|{}^{1}E_{1}| = 0$ or $|{}^{2}E_{1}| = 0$ then $\gamma'_{r2}(G) = \gamma'_{R}(G)$.

Proof Let G = (V, E) be a graph and let $f : E(G) \to \mathcal{P}\{1, 2\}$ be a 2-Rainbow edge dominating function in G and without lose of generality let $|{}^{1}E_{1}| = 0$. Then for any edge *e* in G with $f(e) = \emptyset$ there exist least one edge *é* adjacent to *e* such that $f(e) = \{1, 2\}$.

Now let g: $E(G) \rightarrow \{0,1,2\}$ defined as

$$g(e) = \begin{cases} 0 & \text{if } e \in E_0 \\ 1 & \text{if } e \in {}^2E_1 \\ 2 & \text{if } e \in E_2 \end{cases}$$

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 10 / January 2016

G.Suresh Singh, Hadis Nozarpour- Some Bounds of Rainbow Edge Domination in Graphs

Then clearly g is Roman edge dominating function and $W(g) = |^2E_1| + 2 |E_2|$

Therefore $\gamma'_R(G) \leq |{}^2E_1| + 2 |E_2| = W(f) = \gamma'_{r2}(G)$ Hence $\gamma'_R(G) \leq \gamma'_{r2}(G)$ (1) Also by the theorem 3.1, we have $\gamma'_{r2}(G) \leq \gamma'_R(G)$ (2) From (1) and (2) we have $\gamma'_{r2}(G) = \gamma'_R(G)$. similarly if $|{}^2E_1| = 0$ we can prove in the same way that $\gamma'_{r2}(G)$ $= \gamma'_R(G)$.

Theorem 3.9 Let G be a graph and let $f : E(G) \to \mathcal{P}\{1,2\}$ is 2-Rainbow edge dominating function in G. Then

- i) There exist no common end vertex between the edges in E_2 the edges in ${}^{1}E_1 \cup {}^{2}E_1$.
- ii) If one of ${}^{1}E_{1}$ or ${}^{2}E_{1}$ be equal to zero then E_{2} is minimum edge dominating set of induced subgraph $\langle E_{2} \cup E_{0} \rangle$.
- iii) Each edge in the set E_0 is adjacent to at most two edges of ${}^{1}E_1 \cup {}^{2}E_1$.

Proof

i) Let e and \acute{e} be any two edges in G such that $f(e) = \{1,2\}$ and $f(\acute{e}) = \{1\}$ or $\{2\}$, let e = uv and $\acute{e} = vw$ that means $e \in E_2$ and $\acute{e} \in E_1 \cup E_2$ and e and \acute{e} has common vertex v. Now we can define the function $\acute{f} : E(G) \to \mathcal{P}\{1,2\}$ as the following;

 $f(h) = \begin{cases} \emptyset & \text{if } h = é \\ f(h) & \text{otherwise} \end{cases}$

It is easy to see that $\hat{f}: E(G) \to \mathcal{P}\{1,2\}$ is a 2-Rainbow edge dominating function in G and $W(\hat{f}) = W(f) - 1$ and this is contradiction with the fact that $f: E(G) \to \mathcal{P}\{1,2\}$ is 2-Rainbow edge dominating function. Hence there is no common end vertex between any edge in E_2 and any edge in ${}^{1}E_1 \cup {}^{2}E_1$. **ii)** Let D be a dominating set of induced subgraph $\langle E_2 \cup E_0 \rangle$ and let $|D| < |E_2|$ and let $|{}^1E_1| = 0$. We can define the function f: E(G) $\rightarrow \mathcal{P}\{1,2\}$ as

$$g(h) = \begin{cases} \{1,2\} & \text{if} & h \in D \\ \{2\} & \text{if} & h \in {}^{2}E_{1} \\ \emptyset & \text{if} & h \in (E_{2} \cup E_{0}) - D \end{cases}$$

Then obviously g is 2-Rainbow edge dominating function in G and W(g) = $|{}^{1}E_{1}| + 2|D| < |E_{1}|+2$ $|E_{2}| = W(f) = \gamma'_{r2}(G)$ and this is contradiction.

Hence $|E_2|$ is the minimum dominating set of the induced subgraph $\langle E_2 \cup E_0 \rangle$.

iii) Suppose that $e_0 \in E_0$ is adjacent to three edges in ${}^1E_1 \cup {}^2E_1$ (say) e_1, e_2 and e_3 . let g: E(G) $\rightarrow \mathcal{P}\{1,2\}$ defined as

$$g(e) = \begin{cases} \{1,2\} & \text{if} & e \in E_2 \cup \{e_0\} \\ \{1\} \text{ or } \{2\} & \text{if} & e \in ({}^1E_1 \cup {}^2E_2) - \{e_1, e_2, e_3\} \\ \emptyset & \text{if} & e \in E_0 \cup \{e_1, e_2, e_3\} - \{e_0\} \end{cases}$$

clearly any edge assign to \emptyset by g is adjacent to edge h such that $g(h) = \{1,2\}$ or adjacent to two edges h', h'' such that $g(h') = \{1\}$ and $g(h'') = \{2\}$. Therefore $g : E(G) \to \mathcal{P}\{1,2\}$ is 2-Rainbow edge dominating function in G and W(g) = $|{}^{1}E_{1}| + |{}^{2}E_{1}| - 3 + 2 |E_{2}| + 2$ = $|{}^{1}E_{1}|$ + $|{}^{2}E_{1}|$ +2 $|\mathbf{E}_2|$ -1 $|\mathbf{E}_2| = \mathbf{W}(\mathbf{f})$ $< |{}^{1}E_{1}|$ + $|^{2}E_{1}|$ +2) = $\gamma'_{r2}(G)$ which is contradiction. Hence each edge in E_0 is adjacent to at most two edges of ${}^{1}E_{1} \cup {}^{2}E_{1}$. \Box

Proposition 3.10 Let G = (V, E) be a graph with $q \ge 2$ edges and contains at least one edge of degree q - 1. Then $\gamma'(G) = 1$ and $\gamma'_{r2}(G) = 2$.

Proof Let G be a graph with q edges and let $e_0 \in E(G)$ such that $\deg(e_0) = q-1$. It is

clear that e_0 will dominate all the edges in G therefore $\gamma'(G) = 1$.

Now let $g: E(G) \rightarrow \mathcal{P}\{1,2\}$ be a function defined as

EUROPEAN ACADEMIC RESEARCH - Vol. III, Issue 10 / January 2016

G.Suresh Singh, Hadis Nozarpour- Some Bounds of Rainbow Edge Domination in Graphs

 $f(e) = \begin{cases} \{1,2\} & \text{if } e = e_0 \\ \emptyset & \text{otherwise} \end{cases}$ Since $deg(e_0) = q - 1$, then g is 2-Rainbow edge dominating function in G, and W(g) = 2. Hence $\gamma'_{r_2}(G) \leq 2$. Hence $\gamma'_{r2}(G) = 1$ or 2. But from theorem $\gamma'_{r2}(G) = 1$ if and only if $G \cong K_2$ hence $\gamma'_{r2}(G)$ = 2. □ **Proposition 3.11** Let $G \cong K_2 \Box P_n$ then $\gamma'_{r_2}(G) = n$.

Proof Let $G \cong K_2 \Box P_n$ as the following figure

 u_1 U2 u_3 u_4 u_{n-1} u_n

We define the function $f: E(G) \rightarrow \mathcal{P}\{1,2\}$ as;

$$f(e) = \begin{cases} \{1\} & \text{if } e = v_{2k}u_{2k} \ k \ge 1 \\ \{2\} & \text{if } e = v_{2k-1}u_{2k-1} \ k \ge 1 \\ \emptyset & \text{otherwise} \end{cases}$$

if $f: E(G) \to \mathcal{P}\{1,2\}$, clearly every edge e with $f(e) = \emptyset$ has e' and e'' such that $f(e') = \{1\}$ two neighborhood edges and $f(e'') = \{2\}$. Therefore f is 2-Rainbow edge dominating function and W(*f*) = *n*. Thus $\gamma'_{r2}(G) \le n$ (1)The number of edges in $K_2 \Box P_n$ is q = 2(n-1) + n = 3n-1 and from the theorem

$$\gamma'_{r^2}(G) \ge \left[\frac{2q}{\Delta'+2}\right]$$
 and $\Delta'(G) = 4$ in $K_2 \Box P_n$ we have

$$\gamma'_{r2} (G) \ge \left[\frac{2(3n-1)}{6}\right] = \left[\frac{3n-1}{6}\right] = n$$

Thus $\gamma'_{r2}(G) \ge n$ (2)
From (1) and (2) we have $\gamma'_{r2}(G) = n$.

10635

References

[1] B. Brešar, M .A .Henning, D. F. Rall, Rainbow domination in graphs, Taiwan journal of Mathematics 12(2008) 213-225.

[2] B. Brešar .T. K. Šumenjak, on the 2-rainbow domination in graphs, Discrete Applied Mathematics 155 (2007) 2394-2400.

[3] G. J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Applied Mathematics 158 (2010) 8-12.

[4] G. Suresh Singh, Graph Theory, PHI Learning Private Limited, New Delhi, 2010.

[5] G. Suresh Singh and Hadis Nozarpour, Some Bounds of Rainbow Edge Domination in Graphs, AMERICAN RESEARCH THOUGHTS, 1(11),(2015),2645-2653.

[6] G. Suresh Singh and Hadis Nozarpour, Some Results on Domination Parameters in Graphs- A Special Reference to 2-Rainbow Edge Domination, EUROPEAN ACADEMIC RESEARCH,3(6),(2015),6652-6661.

[7] T. W. Haynes, S.T. Hedetniemi, P.J. slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

[8] T.W. Haynes, S.T. Hedetniemi, P.J. slater (eds). Domination in graph: Advanced Topic, Marcel Dekker, New York, 1998.